Tryprostatin B, a prenylated diketopiperazine with anti-tubulin activity, has been overproduced in fungal culture by expression of genes of the fumitremorgin cluster from Aspergillus fumigatus in the naïve host Aspergillus nidulans using the alcA promoter. The products of the expressed genes catalyse the first two steps of fumitremorgin biosynthesis, namely the formation of brevianamide F and its conversion to tryprostatin B. Yields of tryprostatin B were up to 250 mg/l, a significant improvement in previously reported levels. This approach illustrates how the availability of fungal genome sequences and knowledge of gene function can be used to achieve the efficient production of biologically active secondary metabolites by genetic manipulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2009.01.003DOI Listing

Publication Analysis

Top Keywords

aspergillus nidulans
8
improved tryprostatin
4
tryprostatin production
4
production heterologous
4
heterologous gene
4
gene expression
4
expression aspergillus
4
nidulans tryprostatin
4
tryprostatin prenylated
4
prenylated diketopiperazine
4

Similar Publications

RNA-binding protein Nrd1 plays a role in RNA polymerase II transcription termination. In this study, we showed that the orthologous NrdA is important in global mRNA expression and secondary metabolism in species. We constructed an conditional expression strain using the Tet-On system in mut.

View Article and Find Full Text PDF

Benzene, toluene, ethylbenzene, and xylene (BTEX) exposure is known to be carcinogenic and neurotoxic chemicals to humans. This study investigates the potential of fungal native strains for the bioremediation of BTEX compounds. Fungal isolates were obtained from BTEX-enriched soil, and their ability to degrade these pollutants was evaluated.

View Article and Find Full Text PDF

The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.

View Article and Find Full Text PDF

Testosterone holds significant medical and economic importance, with the global market for testosterone replacement therapies valued at approximately USD 1.9 billion in 2023. This hormone is essential for the development and maintenance of male sexual characteristics as well as bone and muscle health.

View Article and Find Full Text PDF

Nidustrin A, cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans.

Bioorg Chem

February 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address:

Nidustrin A (1), the first cysteine-retained emestrin featuring a unique sulfur-containing 18-membered macrocyclic lactone, along with four biogenetically related compounds (2-5), and one known analogue secoemestrin C (6), were isolated from the large-scale culture of Aspergillus nidulans, an endophytic fungus derived from the Whitmania pigra. Compounds 2 and 3 represent the second examples of noremestrin besides the previously reported noremestrin A, and the single crystal X-ray diffraction analysis of compound 2 provided solid evidence for the intriguing skeleton of noremestrin. Their structures were determined by extensive spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!