To overcome the limitation of conventional docking methods which assume fixed charge model from force field parameters, combined quantum mechanics/molecular mechanics (QM/MM) method has been applied to docking as a variable charge model and shown to exhibit improvement on the docking accuracy over fixed charge based methods. However, it has also been shown that there are a number of examples for which adoption of variable-charge model fails to reproduce the native binding modes. In particular, for metalloproteins, previously implemented method of QM/MM docking failed most often. This class of proteins has highly polarized binding sites at which high-coordinate-numbered metal ions reside. We extend the QM/MM docking method so that protein atoms surrounding the binding site along with metal ions are included as quantum region, as opposed to only ligand atoms. This extension facilitates the required scaling of partial charges on metal ions leading to prediction of correct binding modes in metalloproteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.21270 | DOI Listing |
mLife
December 2024
Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering, East China Normal University Shanghai China.
In silico computational methods have been widely utilized to study enzyme catalytic mechanisms and design enzyme performance, including molecular docking, molecular dynamics, quantum mechanics, and multiscale QM/MM approaches. However, the manual operation associated with these methods poses challenges for simulating enzymes and enzyme variants in a high-throughput manner. We developed the NAC4ED, a high-throughput enzyme mutagenesis computational platform based on the "near-attack conformation" design strategy for enzyme catalysis substrates.
View Article and Find Full Text PDFCarbohydr Res
March 2025
Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT Deemed to Be University), Vellore, Tamil Nadu, India. Electronic address:
Pectate lyases, known for their alkaliphilic nature, are ideal for industrial applications that require specific pH conditions, particularly in industries such as textiles and pulp extraction. These enzymes, primarily from the polysaccharide lyase family 1 (PL1) of different microbial sources, play a vital role in polysaccharide degradation. Given the potent pectinolytic activity of Bacillus pectate lyases, targeting these enzymes is crucial for identifying the most effective candidates.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India.
The scientific community has achieved a remarkable milestone by creating efficacious vaccines against the SARS-CoV-2 virus. The treatment alternatives are still restricted, though. The bioactive ingredients present in natural plants are known to exhibit diverse pharmacological effects against many diseases.
View Article and Find Full Text PDFChemphyschem
December 2024
Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, India, 625 021.
The spike protein is a vital target for therapeutic advancement to inhibit viral entrance. Given that the connection between Spike and ACE2 constitutes the initial phase of SARS-CoV-2 pathogenesis, obstructing this interaction presents a promising therapeutic approach. This work aims to find compounds from DrugBank that can modulate the stability of the spike RBD-ACE2 protein-protein complex.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
Polyacetylene (PA) compounds, as natural products, exhibit remarkable properties and distinctive chemical activities. Three structurally similar C14-PA compounds-Echinophorin D, Echinophorin B, and Echinophorin A-extracted from plants demonstrate varying biological activities on the Transient Receptor Potential Channel A1 (TRPA1) protein, which belongs to the TRP (Transient Receptor Potential) family. In the current study, we investigated the binding modes of these three PA compounds with TRPA1 using molecular dynamics (MD), molecular docking, binding free energy calculations, and quantum mechanics/molecular mechanics (QM/MM) methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!