Tumor cells in the bone microenvironment are able to initiate a vicious cycle of bone degradation by mobilizing osteoclasts, multinucleated cells specialized in bone degradation. c-Src is highly expressed both in tumors and in osteoclasts. Therefore, drugs like AZD0530, designed to inhibit Src activity, could selectively interfere with both tumor and osteoclast activity. Here we explored the effects of AZD0530 on human osteoclast differentiation and activity. The effect on osteoclasts formed in vivo was assessed in mouse fetal calvarial explants and in isolated rabbit osteoclasts, where it dose-dependently inhibited osteoclast activity. Its effect on formation and activity of human osteoclasts in vitro was determined in cocultures of human osteoblasts and peripheral blood mononuclear cells. AZD0530 was most effective in inhibiting osteoclast-like cell formation when present at the onset of osteoclastogenesis, suggesting that Src activity is important during the initial phase of osteoclast formation. Formation of active phosphorylated c-Src, which was highly present in osteoclast-like cells in cocultures and in peripheral blood mononuclear cell monocultures, was significantly reduced by AZD0530. Furthermore, it reversibly prevented osteoclast precursor migration from the osteoblast layer to the bone surface and subsequent formation of actin rings and resorption pits. These data suggest that Src is pivotal for the formation and activity of human osteoclasts, probably through its effect on the distribution of the actin microfilament system. The reversible effect of AZD0530 on osteoclast formation and activity makes it a promising candidate to temper osteoclastic bone degradation in bone diseases with enhanced osteoclast activity such as osteolytic metastatic bone disease.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-08-0219DOI Listing

Publication Analysis

Top Keywords

formation activity
16
activity human
12
human osteoclasts
12
bone degradation
12
osteoclast activity
12
activity
10
azd0530 reversibly
8
formation
8
c-src highly
8
src activity
8

Similar Publications

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Edwards, AM, Coleman, D, Fuller, J, Kesisoglou, A, and Menting, SGP. Time perception and enjoyment of professional soccer players in different training sessions: Implications for assessment of session-RPE and training load. J Strength Cond Res 38(12): e754-e760, 2024-The purpose of this study was to investigate whether the perception of time and enjoyment levels among professional soccer players varied according to the type of training undertaken and whether this influenced the training load (TL) assessment method of session-rating of perceived exertion (sRPE).

View Article and Find Full Text PDF

Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics.

J Strength Cond Res

December 2024

Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.

Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.

View Article and Find Full Text PDF

The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT.

View Article and Find Full Text PDF

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!