To understand the molecular basis for variable sensitivity to the BH3 mimetic drug ABT-737, the abundance of Bcl-2 family members was assayed in a panel of small cell lung cancer cell lines whose sensitivity varied over a 2-log range. Elevated Noxa and Bcl-2 levels directly correlated with sensitivity to ABT-737, whereas Mcl-1 levels were similar in all cell lines tested regardless of sensitivity. Transgenically enforced expression of Noxa but not Bcl-2 resulted in increased sensitivity to ABT-737 in multiple cell lines. This increase was especially pronounced in the H209 cell line in which expression of Noxa resulted in a proportionate decline in Mcl-1 expression. Although overexpression of Noxa enhanced sensitivity of the H526 and H82 cell lines to ABT-737, it did not result in altered Mcl-1 levels. Similarly, small interfering RNA-mediated knockdown of Noxa expression in the H146 cell line, which increased resistance to ABT-737, did not result in altered Mcl-1 levels. Therefore, three of four cell lines studied failed to show Noxa-mediated regulation of Mcl-1 expression. However, despite failure to regulate Mcl-1 levels, Noxa blocked binding of Bim to Mcl-1 following its release from Bcl-2 by ABT-737. Finally, we observed that a 24-hour incubation of the H526 and WBA cell lines with ABT-737 resulted in increased Noxa expression, suggesting that Noxa may play a direct role in ABT-737-mediated apoptosis. These results indicate that Noxa expression is the critical determinant of ABT-737 sensitivity and loss of Noxa-mediated regulation of Mcl-1 expression may be an important feature of small cell lung cancer biology.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-08-1118DOI Listing

Publication Analysis

Top Keywords

cell lines
24
mcl-1 levels
16
small cell
12
cell lung
12
lung cancer
12
mcl-1 expression
12
noxa expression
12
cell
11
abt-737
9
noxa
9

Similar Publications

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.

Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.

Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!