Cholesterol efflux from macrophage foam cells is a rate-limiting step in reverse cholesterol transport. In this process cholesterol acceptors like high-density lipoproteins (HDL) and apolipoprotein (apo)A-I must cross the endothelium to get access to the donor cells in the arterial intima. Previously, we have shown that apoA-I passes a monolayer of aortic endothelial cells (ECs) from the apical to the basolateral side by transcytosis, which is modulated by the ATP-binding cassette transporter (ABC)A1. Here, we analyzed the interaction of mature HDL with ECs. ECs bind HDL in a specific and saturable manner. Both cell surface biotinylation experiments and immunofluorescence microscopy of HDL recovered approximately 30% of the cell-associated HDL intracellularly. Cultivated on inserts ECs bind, internalize, and translocate HDL from the apical to the basolateral compartment in a specific and temperature-dependent manner. The size of the translocated particle was reduced, but its protein moiety remained intact. Using RNA interference, we investigated the impact of SR-BI, ABCA1, and ABCG1 on binding, internalization, and transcytosis of HDL by ECs. HDL binding was reduced by 50% and 30% after silencing of SR-BI and ABCG1, respectively, but not at all after diminishing ABCA1 expression. Knock down of SR-BI and, even more so, ABCG1 reduced HDL transcytosis but did not affect inulin permeability. Cosilencing of both proteins did not further reduce HDL binding, internalization, or transport. In conclusion, ECs transcytose HDL by mechanisms that involve either SR-BI or ABCG1 but not ABCA1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCRESAHA.108.190587 | DOI Listing |
Aging (Albany NY)
July 2024
College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, P.R. China.
The progression of atherosclerosis (AS), the pathological foundation of coronary artery disease (CAD), is featured by massive lipid deposition in the vessel wall. LncRNAs are implicated in lipid disorder and AS, whereas the specific role of lncRNA DANCR in atherogenesis remains unknown. Here, we demonstrated that DANCR promotes macrophage lipid accumulation by regulating the expression of membrane cholesterol transport proteins.
View Article and Find Full Text PDFCurr Neurovasc Res
August 2024
School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China.
Background: Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated.
View Article and Find Full Text PDFFASEB J
February 2024
Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
October 2023
Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
Cholesterol-laden macrophages are recognized as a major contributor to atherosclerosis. However, recent evidence indicates that vascular smooth muscle cells (VSMC) that accumulate cholesterol and transdifferentiate into a macrophage-like cell (MLC) phenotype also play a role in atherosclerosis. Therefore, removing cholesterol from MLC may be a potential atheroprotective strategy.
View Article and Find Full Text PDFJ Lipid Res
June 2023
Department of Pathology, Rush University Medical Center, Chicago, IL, USA. Electronic address:
This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!