AI Article Synopsis

  • Hypoxic environments in secondary lymphoid organs and peripheral tissues influence T-cell metabolism and survival, but their effect on T-cell activation is less understood.
  • In vitro experiments showed that CD4(+) T cells stimulated under hypoxic conditions (1% O(2)) secreted more effector cytokines, particularly IFN-gamma, compared to those stimulated under normal oxygen conditions (20% O(2)).
  • The study found that hypoxia enhances IFN-gamma secretion through mechanisms independent of certain genetic factors, with the transcription factor nuclear erythroid 2 p45-related factor 2 playing a crucial role in this process.

Article Abstract

Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4(+) T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4(+) T-cell cytokines, especially IFN-gamma. The enhancing effects of hypoxia on IFN-gamma secretion were independent of mouse strain, and were also unaffected using CD4(+) T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1alpha. Using T cells from IFN-gamma receptor-deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-gamma expression were not due to effects on IFN-gamma consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45-related factor 2 attenuated the enhancing effect of hypoxia on IFN-gamma secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4(+) T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809218PMC
http://dx.doi.org/10.1165/rcmb.2008-0139OCDOI Listing

Publication Analysis

Top Keywords

hypoxic conditions
12
ifn-gamma secretion
12
cd4+ cells
12
hypoxia ifn-gamma
12
t-cell activation
8
enhancing effects
8
effects hypoxia
8
ifn-gamma
7
hypoxia
6
t-cell
5

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

A Droplet Microfluidic Sensor for Point-of-Care Measurement of Plasma/Serum Total Free Thiol Concentrations.

Anal Chem

January 2025

Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!