The XPC protein (encoded by the xeroderma pigmentosum Xpc gene) is a key DNA damage recognition factor that is required for global genomic nucleotide excision repair (G-NER). In contrast to transcription-coupled nucleotide excision repair (TC-NER), XPC and G-NER have been reported to contribute only modestly to cell survival after DNA damage. Previous studies were conducted using fibroblasts of human or mouse origin. Since the advent of Xpc-/- mice, no study has focused on the bone marrow of these mice. We used carboplatin to induce DNA damage in Xpc-/- and strain-matched wild-type mice. Using several independent methods, Xpc-/- bone marrow was approximately 10-fold more sensitive to carboplatin than the wild type. Importantly, 12/20 Xpc-/- mice died while 0/20 wild-type mice died. We conclude that G-NER, and XPC specifically, can contribute substantially to cell survival. The data are important in the context of cancer chemotherapy, where Xpc gene status and G-NER may be determinants of response to DNA-damaging agents including carboplatin. Additionally, altered cell cycles and altered DNA damage signalling may contribute to the cell survival end point.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701989 | PMC |
http://dx.doi.org/10.1093/mutage/gep011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!