Myristoylated alanine-rich C kinase substrate (MARCKS) is known as a major cellular substrate for protein kinase C (PKC). MARCKS has been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as phagocytosis, endocytosis, and exocytosis. The involvement of MARCKS phosphorylation in secretory function has been reported in Ca(2+)-mediated exocytosis. In rat parotid acinar cells, the activation of beta-adrenergic receptors provokes exocytotic amylase release via accumulation of intracellular cAMP levels. Here, we studied the involvement of MARCKS phosphorylation in the cAMP-dependent amylase release in rat parotid acinar cells. MARCKS protein was detected in rat parotid acinar cells by Western blotting. The beta-adrenergic agonist isoproterenol (IPR) induced MARCKS phosphorylation in a time-dependent manner. Translocation of a part of phosphorylated MARCKS from the membrane to the cytosol and enhancement of MARCKS phosphorylation at the apical membrane site induced by IPR were observed by immunohistochemistry. H89, a cAMP-dependent protein kinase (PKA) inhibitor, inhibited the IPR-induced MARCKS phosphorylation. The PKCdelta inhibitor rottlerin inhibited the IPR-induced MARCKS phosphorylation and amylase release. IPR activated PKCdelta, and the effects of IPR were inhibited by the PKA inhibitors. A MARCKS-related peptide partially inhibited the IPR-induced amylase release. These findings suggest that MARCKS phosphorylation via the activation of PKCdelta, which is downstream of PKA activation, is involved in the cAMP-dependent amylase release in parotid acinar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.90536.2008DOI Listing

Publication Analysis

Top Keywords

marcks phosphorylation
28
amylase release
24
parotid acinar
20
acinar cells
20
camp-dependent amylase
12
rat parotid
12
inhibited ipr-induced
12
marcks
11
phosphorylation
8
myristoylated alanine-rich
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!