Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-7843.2009.00414.x | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.
View Article and Find Full Text PDFBMC Neurosci
December 2024
Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.
Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Introduction: Diphenyl diselenide (DPDS) ameliorates nephropathy in streptozotocin (STZ)-induced type 1 diabetic rats by inhibiting oxidative stress and inflammatory reactions. However, it has not been clarified whether DPDS alleviates type 1 diabetic kidney disease (DKD) is related to the inhibition of extracellular matrix (ECM) production and the regulation of intestinal flora disorder.
Methods: The present study investigated the effects of DPDS on ECM generation in the kidney and intestinal microflora composition in feces.
Chem Asian J
December 2024
Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Chemistry, Vidya Vihar, 333031, Pilani, INDIA.
Nat Commun
November 2024
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp)-S bonds in aryl thiols with CO is reported, providing a synthetic route to important aryl carboxylic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!