Resonance Raman spectra of hematin and hemin solutions are reported for 413 and 514 nm excitation wavelengths. Enhancement of A1g modes (1569 and 1370 cm(-1)) and B1g modes (1124 and 755 cm(-1)) as a function of increased concentration are observed when irradiating with 514 nm laser excitation but not 413 nm. This can be rationalized by considering an excitonic coupling mechanism. As the concentration of hematin increases there is an increased probability of supramolecular interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) units occurring. The Fe(III)PPIX concentration reaches a saturation point in solution and excitonic coupling reaches a maximum causing the enhancement profile to plateau when applying 514 nm excitation. In contrast, when using 413 nm excitation there were no changes in band intensity with increased concentration showing that excitonic coupling through supramolecular interactions for aggregated solutions is wavelength dependent. Electronic absorption spectra show that as the concentration of Fe(III)PPIX increases in solution the Soret band is slightly blue shifted and the Q-band significantly broadens supporting the excitonic hypothesis. Understanding the mechanism that accounts for the Raman photophysical behavior of hemes at high concentrations provided an indirect method to monitor antimalarial drug interactions. A second aim was to investigate chloroquine binding to Fe(III)PPIX-OH/H2O monomers, pi-pi dimers and micro-oxo dimers formed in highly concentrated solutions approaching those of the digestive vacuole of the P. falciparum malaria parasite using excitonic Raman enhancement. It was hypothesized that the Raman excitonic enhancement mechanism could be impeded in heme aggregated solutions by the addition of chloroquine. This would result in a reduction in heme bands associated with the A1g modes including nu4. Resonance Raman spectra recorded using 514 nm excitation show that chloroquine (CQ) acts as a molecular spacer and binds noncovalently through dispersion interactions giving rise to pi-pi interactions, between micro-oxo dimer units of Fe(III)PPIX as evinced by the decrease in intensity of nu4 in the Raman spectrum as a function of increasing CQ mole ratio. In comparison, electronic spectra show that CQ can bind to the unligated face of Fe(III)PPIX-OH/H2O monomers, potentially reducing the formation of pi-pi dimers. This study has important implications in determining the effectiveness of potential antimalarial compounds that are thought to exert their effectiveness by binding through supramolecular interactions to the unligated faces of Fe(III)PPIX-OH/H2O monomers and micro-oxo dimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp811028a | DOI Listing |
Foods
November 2024
Graduate School of Bioresources, Department of Environmental Science and Technology, Mie University, 1577 Kurima-machiya-cho, Tsu 514-8507, Mie, Japan.
Indonesian stingless bee honey (SBH) of is popular and traded at an expensive price. Brown rice syrup (RS) is frequently used as a cheap adulterant for an economically motivated adulteration (EMA) in SBH. In this study, authentic Indonesian SBH of ( = 100), adulterated SBH ( = 120), fake SBH ( = 100), and RS ( = 200) were prepared.
View Article and Find Full Text PDFACS Omega
November 2024
Laboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brazil.
Poultry litter (PL) hydrochars obtained at different temperatures and charring times were characterized by solid-state H, C and P nuclear magnetic resonance (NMR) spectroscopy. C NMR spectra obtained with cross polarization (CP) and magic-angle spinning evidenced the chemical and structural changes suffered by PL during its transformation into hydrochar; these changes were particularly dependent on the production temperature rather than the residence time. The hydrochars were essentially composed of aromatic and alkyl domains at the temperature of 250 °C.
View Article and Find Full Text PDFJ Fluoresc
November 2024
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, ET-11562, Egypt.
Vibegron is a novel selective beta-3 adrenergic receptor agonist molecule, recently approved by US Food and Drug Administration (FDA) in tablet pharmaceutical formulation for treating overactive bladder syndrome. Such formulation necessitates the development of a simple, fast and cost-effective methodology capable of assaying the drug in various real samples with high sensitivity. Herein, a facile and robust spectrofluorimetric method was introduced, for the first time, for vibegron quantification based on analytical quality-by-design approach.
View Article and Find Full Text PDFChaos
October 2024
Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany.
When an electron in a semiconductor gets excited to the conduction band, the missing electron can be viewed as a positively charged particle, the hole. Due to the Coulomb interaction, electrons and holes can form a hydrogen-like bound state called the exciton. For cuprous oxide, a Rydberg series up to high principle quantum numbers has been observed by Kazimierczuk et al.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2024
National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
Dopamine (DA) is a potent neuromodulator in the brain that affects a wide range of motivated behaviors. Abnormal concentration of DA is related to a variety of diseases. Hence, it is imperative to establish a rapid and precise method for quantifying DA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!