Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycosylated antitumor ether lipids (GAELs) have superior anticancer properties relative to the alkyllysophospholipid class, but there have been no studies of the mechanisms of these compounds. The prototype GAEL, 1-O-hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-beta-D-glucopyranosyl)-sn-glycerol (Gln), effectively killed mouse embryonic fibroblasts (MEFs) lacking key molecules involved in caspase-dependent apoptosis, and cell death was not prevented by caspase inhibitors. Gln did not cause a loss of mitochondrial membrane potential, even in rounded-up dying cells. Gln stimulated the appearance and accumulation of LC3-II, a protein marker for autophagy, in a variety of cells, including wild-type MEFs, but not in MEFs lacking ATG5, a key protein required for autophagy. Gln induced LC3 puncta formation in Chinese hamster ovary cells stably expressing a LC3-green fluorescent protein fusion protein. Thus, Gln appears to induce autophagy. Autophagy was mTOR-independent and was not inhibited by 3-methyladenine or wortmannin. Although Gln is toxic, cellular ability to undergo autophagy was not essential for its toxicity. Furthermore, the GAEL analog 2-deoxy-C-Glc induced LC3 puncta formation but did not kill the cells. Gln, but not 2-deoxy-C-Glc, caused the accumulation of cytoplasmic acidic vacuoles in the cells. Our data suggest that GAELs may activate autophagy; however, GAELs do not kill cells by apoptosis or autophagy but rather by a paraptosis-like cell death mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/o08-147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!