A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electronic influenza monitoring: evaluation of body temperature to classify influenza-like illness in a syndromic surveillance system. | LitMetric

The Centers for Disease Control and Prevention (CDC) defines influenza-like illness (ILI) for its sentinel providers as fever (temperature > or =100.5 degrees F or 37.8 degrees C) and a cough and/or a sore throat in the absence of a known cause other than influenza. For electronic disease surveillance systems, classifying ILI with clinical data that identify only individual aspects of the case definition may add excessive levels of unwanted noise to the system; however, the capability to analyze a patient's body temperature along with other available clinical data (International Classification of Diseases, Ninth Revision codes) could improve diagnostic precision and more accurately classify cases of ILI in a syndromic surveillance system. Developing Boolean algorithms to properly classify true cases of influenza plays an important role toward understanding accurate levels of disease in a community and can also be a key tool for allocating urgent prophylaxis such as antiviral medications during severe outbreaks and pandemics. Results for this study show that elevated body temperature was 40% efficient in correctly predicting laboratory-positive confirmations of influenza (sensitivity) but at the same time was 76% efficient in ruling out influenza (specificity) in the group of sampled members who were tested for influenza.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QMH.0b013e3181a0274dDOI Listing

Publication Analysis

Top Keywords

body temperature
12
influenza-like illness
8
syndromic surveillance
8
surveillance system
8
clinical data
8
influenza
5
electronic influenza
4
influenza monitoring
4
monitoring evaluation
4
evaluation body
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!