The need to quantify the mechanical properties of human abdominal organs is becoming increasingly important in the automotive industry due to the large incidence of injuries to these organs as a result of motor vehicle crashes. The need to develop appropriate preservation and testing methodology is of particular importance because of how quickly abdominal organ tissues degrade after death. The purpose of this study was to determine the effects of freezing on the mechanical properties of bovine liver parenchyma in uni-axial tension. In the current study, one fresh never frozen bovine liver was divided in half. One half was frozen and then thawed prior to preparation, and the other half tested immediately. Each half was sliced and stamped so that multiple parenchyma tension coupons were produced. A total of 16 failure tests were performed at an average strain rate of 0.07 s-1, 8 fresh and 8 previously frozen, using a custom uni-axial tension system. The results showed that there was no statistically significant difference (p=0.07) in the average failure stress between fresh and previously frozen tissue. However, the average failure strain of the previously frozen tissue was found to be significantly less (p>0.01) than the average failure strain of the fresh tissue. It was concluded from these data that in order to obtain accurate tensile mechanical properties of bovine liver parenchyma, the liver must not be frozen prior to testing.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mechanical properties
16
bovine liver
16
properties bovine
12
fresh frozen
12
average failure
12
freezing mechanical
8
liver parenchyma
8
uni-axial tension
8
frozen tissue
8
failure strain
8

Similar Publications

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have recently gained attention due to their tailorable properties and versatile applications in several fields, including green chemistry, pharmaceuticals, and energy storage. Their tunable properties can be enhanced by mixing DESs with cosolvents such as ethanol, acetonitrile, and water. DESs are structurally complex, and molecular modeling techniques, including quantum mechanical calculations and molecular dynamics simulations, play a crucial role in understanding their intricate behavior when mixed with cosolvents.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in various tissues, including bone, due to aging and conditions like diabetes mellitus. To investigate the effects of AGEs on bone material quality and biomechanical properties, an study utilizing human tibial cortex, sectioned into 90 beams, and randomly assigned to three mechanical test groups was performed. Each test group included ribose ( = 0.

View Article and Find Full Text PDF

Elemental Germanium Activation and Catalysis Enabled by Mechanical Force.

Angew Chem Int Ed Engl

January 2025

Sichuan University West China Hospital, State key laboratory of biotherapy, Renming South Road 17, 610041, Chengdu, CHINA.

In the realm of materials science and chemical industry, germanium emerges as a strategic resource with distinctive properties that extend its applicability beyond traditional electronics and optics into the promising field of chemical catalysis. Despite its significant role in advanced technological applications, the potential of elemental germanium as a catalyst remains unexplored. Leveraging recent developments in mechanochemistry, this study introduces a groundbreaking approach to activate elemental germanium via mechanical force, facilitating the Reformatsky reaction without the reliance on external reducing agents.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!