We have previously shown that varicella-zoster virus (VZV) and cytomegalovirus (CMV) infection of diploid human fibroblasts (HEL) results in neo-expression of Lewis antigens sialyl Lewis x (sLe(x)) and Lewis y (Le(y)), respectively, after transcriptional activation of different combinations of dormant human fucosyltransferase genes (FUT1, FUT3, FUT5, and FUT6), whose gene products are responsible for the synthesis of Le antigens. Here, we show that herpes simplex virus type 1 (HSV-1) also induces sLe(x) expression dependent on induction of FUT3, FUT5, and FUT6 transcription in infected cells. HSV-1 induction of FUT5 was subsequently used as a model system for analyzing the mechanism of viral activation of dormant fucosyltransferase genes. We show that this is a rapid process, which gives rise to elevated FUT5 RNA levels already at 90 min postinfection. Augmented FUT5 transcription was found to be dependent on transcription of viral genes, but not dependent on the immediate early proteins ICP0 and ICP4, as demonstrated by experiments with HSV-1 mutants defective in expression of these genes. Augmented FUT5 transcription takes place in cycloheximide-treated HSV-1-infected cells, suggesting a more direct role for IE viral RNA during activation of cellular FUT5.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwp057DOI Listing

Publication Analysis

Top Keywords

fucosyltransferase genes
12
herpes simplex
8
simplex virus
8
virus type
8
fut3 fut5
8
fut5 fut6
8
augmented fut5
8
fut5 transcription
8
fut5
7
transcription
5

Similar Publications

Personalized nutrition and precision medicine in perimenopausal women: A minireview of genetic polymorphisms COMT, FUT2, and MTHFR.

Clinics (Sao Paulo)

December 2024

Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; Botânio Pesquisa e Desenvolvimento Ltda, São Paulo, SP 05545010, Brazil. Electronic address:

This mini-review explores the potential of precision medicine and personalized nutrition in addressing health challenges faced by perimenopausal women, focusing on the role of genetic polymorphisms in key metabolic pathways. Specifically focus on the single nucleotide polymorphisms (SNPs) in the COMT, FUT2, and MTHFR genes, which influence neurotransmitter metabolism, gut microbiota composition, and folate homeostasis, respectively. These polymorphisms are critical in modulating hormonal fluctuations, metabolic imbalances, and nutrient absorption during perimenopause.

View Article and Find Full Text PDF

Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensive combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG).

View Article and Find Full Text PDF

Seed samples of two types of chickpea (Cicer arietinum Linn.), including variety A (NRCGR-4452) and variety B (local varieties), with different seed colors, were collected every five days for a total of four times during the seed development period. Non-targeted metabolome and transcriptome sequencing were conducted to identify differentially expressed genes and metabolites associated with chickpea seed coat color.

View Article and Find Full Text PDF

Objective: To investigate the serological and molecular genetic characteristics of a voluntary blood donor with combined FUT1 and ABO blood group gene variants causing para-Bombay and A2 subtype, and to review relevant literature on para-Bombay blood types carrying alleles such as FUT101W.37 and FUT101W.23.

View Article and Find Full Text PDF

Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-Fuc). A nucleocytoplasmic O-fucosyltransferase (OFT) occurs in the pathogen , the social amoeba , and higher plants, where it is called Spy because mutants have a spindly appearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!