Purpose: To test the effect of Palomid 529, an inhibitor of the Akt/mTOR pathway, on Müller cell proliferation, subretinal glial scar formation, and photoreceptor survival after experimental retinal detachment (RD).

Methods: Palomid 529 (600 microg) in balanced salt solution or balanced salt solution alone was injected intravitreally immediately after RD into the right eyes of 12 rabbits. Ten micrograms of BrdU was injected intravitreally on day 3. Animals were killed on day 3 or 7, at which time retinal sections were labeled with anti-BrdU to detect dividing cells, with anti-vimentin to identify Müller cells, and with the isolectin B4 to identify microglia and macrophages. Outer nuclear layer (ONL) thickness was measured from fluorescence-labeled nuclear-stained sections. Labeling was imaged using confocal microscopy. Six additional animals received either drug or balanced salt solution injections into normal eyes, and paraffin sections were stained with hematoxylin and eosin.

Results: In the drug-treated eyes there was a significant decrease in the number of anti-BrdU-labeled Müller cells, the number and size of subretinal scars, and the number of isolectin B4-labeled cells. The ONL was also significantly thicker, and there was no evidence of toxic effects.

Conclusions: Palomid 529 is an effective suppressor of Müller cell proliferation, glial scar formation, and photoreceptor cell death in a rabbit model of RD. This suggests that inhibiting the Akt/mTOR signal transduction pathway may be an effective strategy to decrease proliferation and photoreceptor cell death induced by detachment and perhaps represents a novel therapy for related human diseases such as proliferative vitreoretinopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.09-3445DOI Listing

Publication Analysis

Top Keywords

photoreceptor cell
12
cell death
12
palomid 529
12
balanced salt
12
salt solution
12
experimental retinal
8
retinal detachment
8
inhibitor akt/mtor
8
akt/mtor pathway
8
müller cell
8

Similar Publications

The retinal pigment epithelium (RPE) performs a number of functions essential for retinal health. RPE dysregulation and degeneration can occur in diseases. Methods to image the human RPE directly are limited, as it is only about 10 µm thick and situated between the photoreceptor outer segments and Bruch's membrane (BM).

View Article and Find Full Text PDF

Photoreceptor metabolic window unveils eye-body interactions.

Nat Commun

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.

Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.

View Article and Find Full Text PDF

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.

View Article and Find Full Text PDF

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!