Historical forest baselines reveal potential for continued carbon sequestration.

Proc Natl Acad Sci U S A

Department of Geography, McGill University, Montreal, QC, Canada.

Published: April 2009

AI Article Synopsis

  • One-third of net CO(2) emissions since 1850 are attributed to land-use changes, mainly from forest clearing for timber and agriculture, but quantifying these changes is difficult due to limited historical data.
  • A study in Wisconsin reconstructed pre-settlement forest carbon levels, revealing a drop in above-ground carbon from 434 TgC in the 1850s to 120 TgC in the 1930s, with a partial recovery to 276 TgC today.
  • The research highlights that while southern regions have increased carbon storage due to fire suppression, northern forests still lag behind, suggesting that reforestation and reconsideration of land-use practices could enhance carbon sequestration by as much as 219 TgC.

Article Abstract

One-third of net CO(2) emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669390PMC
http://dx.doi.org/10.1073/pnas.0810076106DOI Listing

Publication Analysis

Top Keywords

forest carbon
8
agricultural lands
8
carbon
6
tgc
5
historical
4
historical forest
4
forest baselines
4
baselines reveal
4
reveal potential
4
potential continued
4

Similar Publications

A review of cellulose and lignin contained rattan materials: Structure, properties, modifications, applications and perspectives.

Int J Biol Macromol

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Rattan is a multi-purpose plant resource in the tropical forest treasure house. With its good technological characteristics, it has become an excellent material for the preparation of industry. The original rattan is an important forest product second only to wood and bamboo.

View Article and Find Full Text PDF

Worldwide comparison of carbon stocks and fluxes between native and non-native forests.

Biol Rev Camb Philos Soc

December 2024

Departamento de Ciencias de la Vida, Universidad de Alcalá, Facultad de Ciencias, Área de Ecología, Ctra. Madrid-Barcelona, km.33, 600, 28805, Alcalá de Henares, Madrid, Spain.

Climate change is one of the main challenges that human societies are currently facing. Given that forests represent major natural carbon sinks in terrestrial ecosystems, administrations worldwide are launching broad-scale programs to promote forests, including stands of non-native trees. Yet, non-native trees may have profound impacts on the functions and services of forest ecosystems, including the carbon cycle, as they may differ widely from native trees in structural and functional characteristics.

View Article and Find Full Text PDF

Premise: Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown.

View Article and Find Full Text PDF

Over the past decade, multidisciplinary research has seen the Amazon Basin go from a context perceived as unfavourable for food production and large-scale human societies to one of 'garden cities', domestication, and anthropogenically influenced forests and soils. Nevertheless, direct insights into human interactions with particular crops and especially animals remain scarce across this vast area. Here we present new stable carbon and nitrogen isotope data from 86 human and 68 animal remains dating between CE ~700 and 1400 from the Llanos de Mojos, Bolivia.

View Article and Find Full Text PDF

Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: