One-third of net CO(2) emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669390 | PMC |
http://dx.doi.org/10.1073/pnas.0810076106 | DOI Listing |
Int J Biol Macromol
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Rattan is a multi-purpose plant resource in the tropical forest treasure house. With its good technological characteristics, it has become an excellent material for the preparation of industry. The original rattan is an important forest product second only to wood and bamboo.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2024
Departamento de Ciencias de la Vida, Universidad de Alcalá, Facultad de Ciencias, Área de Ecología, Ctra. Madrid-Barcelona, km.33, 600, 28805, Alcalá de Henares, Madrid, Spain.
Climate change is one of the main challenges that human societies are currently facing. Given that forests represent major natural carbon sinks in terrestrial ecosystems, administrations worldwide are launching broad-scale programs to promote forests, including stands of non-native trees. Yet, non-native trees may have profound impacts on the functions and services of forest ecosystems, including the carbon cycle, as they may differ widely from native trees in structural and functional characteristics.
View Article and Find Full Text PDFAm J Bot
December 2024
ETH-Zürich, Institute for Integrative Biology, Plant Ecology Group, Zürich, Switzerland.
Premise: Tree structure and function are constrained by and acclimate to climatic conditions. Drought limits plant growth and carbon acquisition and can result in "legacy" effects that last beyond the period of water stress. Leaf and twig-level legacy effects of past water abundance, such as that experienced by trees that established under wetter conditions are unknown.
View Article and Find Full Text PDFNat Hum Behav
December 2024
Department of Archaeology, University of Cambridge, Cambridge, UK.
Over the past decade, multidisciplinary research has seen the Amazon Basin go from a context perceived as unfavourable for food production and large-scale human societies to one of 'garden cities', domestication, and anthropogenically influenced forests and soils. Nevertheless, direct insights into human interactions with particular crops and especially animals remain scarce across this vast area. Here we present new stable carbon and nitrogen isotope data from 86 human and 68 animal remains dating between CE ~700 and 1400 from the Llanos de Mojos, Bolivia.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia.
Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!