Large scale nonlinear control system fine-tuning through learning.

IEEE Trans Neural Netw

Dynamic Systems and Simulation Laboratory, Department of Production and Management Engineering, Technical University of Crete, Chania 73100, Greece.

Published: June 2009

Despite the continuous advances in the fields of intelligent control and computing, the design and deployment of efficient large scale nonlinear control systems (LNCSs) requires a tedious fine-tuning of the LNCS parameters before and during the actual system operation. In the majority of LNCSs the fine-tuning process is performed by experienced personnel based on field observations via experimentation with different combinations of controller parameters, without the use of a systematic approach. The existing adaptive/neural/fuzzy control methodologies cannot be used towards the development of a systematic, automated fine-tuning procedure for general LNCS due to the strict assumptions they impose on the controlled system dynamics; on the other hand, adaptive optimization methodologies fail to guarantee an efficient and safe performance during the fine-tuning process, mainly due to the fact that these methodologies involve the use of random perturbations. In this paper, we introduce and analyze, both by means of mathematical arguments and simulation experiments, a new learning/adaptive algorithm that can provide with convergent, an efficient and safe fine-tuning of general LNCS. The proposed algorithm consists of a combination of two different algorithms proposed by Kosmatopoulos (2007 and 2008) and the incremental-extreme learning machine neural networks (I-ELM-NNs). Among the nice properties of the proposed algorithm is that it significantly outperforms the algorithms proposed by Kosmatopoulos as well as other existing adaptive optimization algorithms. Moreover, contrary to the algorithms proposed by Kosmatopoulos , the proposed algorithm can operate efficiently in the case where the exogenous system inputs (e.g., disturbances, commands, demand, etc.) are unbounded signals.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2009.2014061DOI Listing

Publication Analysis

Top Keywords

proposed algorithm
12
algorithms proposed
12
proposed kosmatopoulos
12
large scale
8
scale nonlinear
8
nonlinear control
8
fine-tuning process
8
general lncs
8
adaptive optimization
8
efficient safe
8

Similar Publications

Background: Hemorrhagic transformation (HT) is a complication of reperfusion therapy following acute ischemic stroke (AIS). We aimed to develop and validate a model for predicting HT and its subtypes with poor prognosis-parenchymal hemorrhage (PH), including PH-1 (hematoma within infarcted tissue, occupying < 30%) and PH-2 (hematoma occupying ≥ 30% of the infarcted tissue)-in AIS patients following intravenous thrombolysis (IVT) based on noncontrast computed tomography (NCCT) and clinical data.

Methods: In this six-center retrospective study, clinical and imaging data from 445 consecutive IVT-treated AIS patients were collected (01/2018-06/2023).

View Article and Find Full Text PDF

Identifying Disease Associated Multi-Omics Network With Mixed Graphical Models Based on Markov Random Field Model.

Genet Epidemiol

January 2025

Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea.

In this article, we proposed a new method named fused mixed graphical model (FMGM), which can infer network structures associated with dichotomous phenotypes. FMGM is based on a pairwise Markov random field model, and statistical analyses including the proposed method were conducted to find biological markers and underlying network structures of the atopic dermatitis (AD) from multiomics data of 6-month-old infants. The performance of FMGM was evaluated with simulations by using synthetic datasets of power-law networks, showing that FMGM had superior performance for identifying the differences of the networks compared to the separate inference with the previous method, causalMGM (F1-scores 0.

View Article and Find Full Text PDF

Data fusion by T3-PCA: A global model for the simultaneous analysis of coupled three-way and two-way real-valued data.

Br J Math Stat Psychol

January 2025

Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, Katholieke Universiteit, Leuven, Belgium.

In various areas of science, researchers try to gain insight into important processes by jointly analysing different datasets containing information regarding common aspects of these processes. For example, to explain individual differences in personality, researchers collect, for the same set of persons, data regarding behavioural signatures (i.e.

View Article and Find Full Text PDF

Estimating rare event kinetics from molecular dynamics simulations is a non-trivial task despite the great advances in enhanced sampling methods. Weighted Ensemble (WE) simulation, a special class of enhanced sampling techniques, offers a way to directly calculate kinetic rate constants from biased trajectories without the need to modify the underlying energy landscape using bias potentials. Conventional WE algorithms use different binning schemes to partition the collective variable (CV) space separating the two metastable states of interest.

View Article and Find Full Text PDF

The disease affects the optic nerve and represents the principle reasons of irreversible vision loss, mostly asymptomatic and uncontrolled. Consequently, early and accurate diagnosis is critical to prevent or reduce its effect, however, conventional diagnostic techniques often fail to provide concrete results. In this regard, we present a new approach built on Generative Adversarial Networks (GAN) and MobileNetV2 pretrained architecture for diagnosing glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!