Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiolipin is a unique phospholipid which is almost exclusively located at the level of the inner mitochondrial membrane where it is biosynthesized. This phospholipid is known to be intimately involved in several mitochondrial bioenergetic processes. In addition, cardiolipin also has active roles in several of the mitochondrial-dependent steps of apoptosis and in mitochondrial membrane dynamics. Alterations in cardiolipin structure, content and acyl chains composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including ischemia/reperfusion, different thyroid states, diabetes, aging and heart failure. Cardiolipin is particularly susceptible to ROS attack due to its high content of unsaturated fatty acids. Oxidative damage to cardiolipin would negatively impact the biochemical function of the mitochondrial membranes altering membrane fluidity, ion permeability, structure and function of components of the mitochondrial electron transport chain, resulting in reduced mitochondrial oxidative phosphorylation efficiency and apoptosis. Diseases in which mitochondrial dysfunction has been linked to cardiolipin peroxidation are described. Ca(2+), particularly at high concentrations, appears to have several negative effects on mitochondrial function, some of these effects being linked to CL peroxidation. Cardiolipin peroxidation has been shown to participate, together with Ca(2+), in mitochondrial permeability transition. In this review, we provide an overview of the role of CL peroxidation and Ca(2+) in mitochondrial dysfunction and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2009.03.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!