In the present investigation, substituted cinnamic acids (3-hydroxy, 4-hydroxy, 2-nitro, 3-nitro, 4-nitro, 3-chloro, and 4-methoxy) and their amide analogues with four different types of substituted anilines have been synthesized. The synthesized compounds have been screened for their germination inhibition activity on radish (Raphanus sativus L. var. Japanese White) seeds at 50, 100, and 200 ppm concentrations, and the activity was compared with standard herbicide, metribuzin formulation (sencor). Significant activity was exhibited by all of the compounds. It was observed that with the increase in concentration of the test solution, the activity also increased. All of the compounds showed more than 70% inhibition at 100 ppm concentration except 4-hydroxy cinnamanilide. The compound, 2-chloro (4'-hydroxy) cinnamanilide was the best among the tested compounds, and it was found to be at par with the standard, metribuzin at all concentrations. Thus, it can be concluded that substituted cinnamic acids and their amide analogues may be developed as potential herbicides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf8034385 | DOI Listing |
Carbohydr Polym
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:
Xylan-derived packaging materials have gained considerable popularity owing to their renewability, non-toxicity, and biodegradability. However, thermoforming is challenging owing to its rigid structure and hydrogen-bonding network of the xylan molecular chain, which limits its large-scale production. Herein, a heat-processable xylan derivative, xylan cinnamate (XC), was synthesized via an esterification reaction in ionic liquids.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
An efficient deuteration method through the ex situ generation of D for the reductive deuteration of biologically significant α-substituted acrylic acids and enamide derivatives is reported. This method was successfully applied to the synthesis of deuterated analogs of marketed NSAIDs such as ibuprofen, flurbiprofen, and naproxen. Additionally, it facilitates late-stage deuteration of enamides and -vinylated drugs.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
Dihydronaphthalenes play a crucial role in bioactive natural products and new drug discovery, and efficient and economic strategies to build them are needed. Herein, we disclose a highly efficient method to prepare dihydronaphthalenes a cerium-catalyzed cycloaddition of 1-isochromenes with cinnamic acids. This newly developed method not only features a broad and low-cost substrate scope and mild conditions but also exhibits very high functional group tolerance, including hydroxyl, borate ester and ester group substituents.
View Article and Find Full Text PDFFood Res Int
January 2025
CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Anthocyanins (ANS) are an appealing substitute to synthetic colorants; but their practical applicability is limited due to low color stability. Copigmentation can improve both complex's color stability as well as intensity. In this study, we examined the interaction of red cabbage ANS with copigments i.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing, 211135, China. Electronic address:
Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!