PvdA catalyzes the hydroxylation of the side chain primary amine of ornithine in the initial step of the biosynthesis of the Pseudomonas aeruginosa siderophore pyoverdin. The reaction requires FAD, NADPH, and O(2). PvdA uses the same cosubstrates as several flavin-dependent hydroxylases that differ one from another in the kinetic mechanisms of their oxidative and reductive half-reactions. Therefore, the mechanism of PvdA was determined by absorption stopped-flow experiments. By contrast to some flavin-dependent hydroxylases (notably, p-hydroxybenzoate hydroxylase), binding of the hydroxylation target is not required to trigger reduction of the flavin by NADPH: the reductive half-reaction is equally facile in the presence and absence of ornithine. Reaction of O(2) with FADH(2) in the oxidative half-reaction is accelerated by ornithine 80-fold, providing a mechanism by which PvdA can ensure coupling of NADPH and ornithine oxidation. In the presence of ornithine, the expected C(4a)-hydroperoxyflavin intermediate with 390 nm absorption accumulates and decays to the C(4a)-hydroxyflavin in a kinetically competent fashion. The slower oxidative half-reaction that occurs in the absence of ornithine involves accumulation of an oxygenated flavin species and two subsequent states that are tentatively assigned as C(4a)-peroxy- and C(4a)-hydroperoxyflavin intermediates and the oxidized flavin. The enzyme generates stoichiometric hydrogen peroxide in lieu of hydroxyornithine. The data suggest that PvdA employs a kinetic mechanism that is a hybrid of those previously documented for other flavin-dependent hydroxylases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710847 | PMC |
http://dx.doi.org/10.1021/bi900442z | DOI Listing |
RSC Chem Biol
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong Thailand
Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (HO). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Chemistry, University of Massachusetts, Boston, MA 02125.
Sulfur is an essential element for life. Bacteria can obtain sulfur from inorganic sulfate; but in the sulfur starvation-induced response, employ two-component flavin-dependent monooxygenases (TC-FMOs) from the and operons to assimilate sulfur from environmental compounds including alkanesulfonates and dialkylsulfones. Here, we report binding studies of oxidized FMN to enzymes involved within the enzymatic pathway responsible for converting dimethylsulfone (DMSO) to sulfite.
View Article and Find Full Text PDFLife's organic molecules are built with diverse functional groups that enable biology by fine tuning intimate connections through time and space. As such, the discovery of new-to-nature functional groups can expand our understanding of the natural world and motivate new applications in biotechnology and biomedicine. Herein we report the genome-aided discovery of sulfenicin, a novel polyketide-nonribosomal peptide hybrid natural product from a marine bacterium bearing a unique acylsulfenic acid functionality.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Biocatalysis can be powerful in organic synthesis but is often limited by enzymes' substrate scope and selectivity. Developing a biocatalytic step involves identifying an initial enzyme for the target reaction followed by optimization through rational design, directed evolution, or both. These steps are time consuming, resource-intensive, and require expertise beyond typical organic chemistry.
View Article and Find Full Text PDFBiochemistry
November 2024
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!