Biodegradation of 17beta-estradiol, estrone and testosterone in stream sediments.

Environ Sci Technol

U.S. Geological Survey, 720 Gracern Rd, Suite 129, Columbia, South Carolina 29210-7651, USA.

Published: March 2009

Biodegradation of 17beta-estradiol (E2), estrone (E1), and testosterone (T) was investigated in three wastewater treatment plant (WWTP) affected streams in the United States. Relative differences in the mineralization of [4-(14)C] substrates were assessed in oxic microcosms containing saturated sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream sediment demonstrated significant mineralization of the "A" ring of E2, E1, and T, with biodegradation of T consistently greater than that of E2 and no systematic difference in E2 and E1 biodegradation. "A" ring mineralization also was observed in downstream sediment, with E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, E2 mineralization in sediment immediately downstream from the WWTP outfalls was more than double that in upstream sediment. E2 mineralization was observed in water, albeit at insufficient rate to prevent substantial downstream transport. The results indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for noncon-servative (destructive) attenuation of hormonal endocrine disruptors in effluent-affected streams.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es802797jDOI Listing

Publication Analysis

Top Keywords

biodegradation 17beta-estradiol
8
17beta-estradiol estrone
8
estrone testosterone
8
downstream wwtp
8
wwtp outfall
8
upstream sediment
8
"a" ring
8
mineralization observed
8
sediment mineralization
8
mineralization
6

Similar Publications

Context: Guidelines for use of injectable estradiol esters (valerate [EV] and cypionate [EC]) among transgender and gender diverse (TGD) individuals designated male at birth vary considerably, with many providers noting supraphysiologic serum estradiol concentrations based on current dosing recommendations.

Objectives: 1. Determine dose of injectable estradiol (subcutaneous [SC] and intramuscular [IM]) needed to reach guideline-recommended estradiol concentrations for TGD adults using EC/EV.

View Article and Find Full Text PDF

17β-estradiol promotes osteogenic differentiation of BMSCs by regulating mitophagy through ARC.

J Orthop Surg Res

January 2025

Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.

The study aims to elucidate the mechanism through which 17β-estradiol facilitates osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). In our study, lentiviral transfection was employed to establish apoptosis repressor with caspase recruitment domain (ARC) knockdown or overexpression in BMSCs. The impact of 17β-estradiol on ARC expression was assessed using western blot, RT-PCR and immunofluorescence.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.

View Article and Find Full Text PDF

Background: Alcohol intake is associated with a higher risk of estrogen receptor-positive (ER+) breast cancer (BC), presumably through its confirmed ability to increase sex hormone levels. Whether consuming alcohol within the recommended limit of one serving per day increases sex hormone levels among postmenopausal women taking aromatase inhibitors (AI) to inhibit estrogen production remains unknown. Therefore, we compared sex hormone levels following white wine to levels following white grape juice among ER + BC survivors taking AIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!