Despite major advances in the management of malignant gliomas of which glioblastomas represent the ultimate grade of malignancy, they remain characterized by dismal prognoses. Glioblastoma patients have a median survival expectancy of only 14 months on the current standard treatment of surgical resection to the extent feasible, followed by adjuvant radiotherapy plus temozolomide, given concomitantly with and after radiotherapy. Malignant gliomas are associated with such dismal prognoses because glioma cells can actively migrate through the narrow extra-cellular spaces in the brain, often travelling relatively long distances, making them elusive targets for effective surgical management. Clinical and experimental data have demonstrated that invasive malignant glioma cells show a decrease in their proliferation rates and a relative resistance to apoptosis (type I programmed cell death) as compared to the highly cellular centre of the tumor, and this may contribute to their resistance to conventional pro-apoptotic chemotherapy and radiotherapy. Resistance to apoptosis results from changes at the genomic, transcriptional and post-transcriptional level of proteins, protein kinases and their transcriptional factor effectors. The PTEN/ PI3K/Akt/mTOR/NF-kappaB and the Ras/Raf/MEK/ERK signaling cascades play critical roles in the regulation of gene expression and prevention of apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer, notably glioblastomas. Monoclonal antibodies and low molecular-weight kinase inhibitors of these pathways are the most common classes of agents in targeted cancer treatment. However, most clinical trials of these agents as monotherapies have failed to demonstrate survival benefit. Despite resistance to apoptosis being closely linked to tumorigenesis, tumor cells can still be induced to die by non-apoptotic mechanisms such as necrosis, senescence, autophagy (type II programmed cell death) and mitotic catastrophe. Temozolomide brings significant therapeutic benefits in glioblastoma treatment. Part of temozolomide cytotoxic activity is exerted through pro-autophagic processes and also through the induction of late apoptosis. Autophagy, type II programmed cell death, represents an alternative mechanism to overcome, at least partly, the dramatic resistance of many cancers to pro-apoptotic-related therapies. Another way to potentially overcome apoptosis resistance is to decrease the migration of malignant glioma cells in the brain, which then should restore a level of sensitivity to pro-apoptotic drugs. Recent series of studies have supported the concept that malignant gliomas might be seen as an orchestration of cross-talks between cancer cells, microenvironment, vasculature and cancer stem cells. The present chapter focuses on (i) the major signaling pathways making glioblastomas resistant to apoptosis, (ii) the signaling pathways distinctly activated by pro-autophagic drugs as compared to pro-apoptotic ones, (iii) autophagic cell death as an alternative to combat malignant gliomas, (iv) the major scientific data already obtained by researchers to prove that temozolomide is actually a pro-autophagic and pro-apoptotic drug, (v) the molecular and cellular therapies and local drug delivery which could be used to complement conventional treatments, and a review of some of the currently ongoing clinical trials, (vi) the fact that reducing the levels of malignant glioma cell motility can restore pro-apoptotic drug sensitivity, (vii) the observation that inhibiting the sodium pump activity reduces both glioma cell proliferation and migration, (viii) the brain tumor stem cells as a target to complement conventional treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-211-78741-0_1 | DOI Listing |
Mol Med Rep
March 2025
Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses.
View Article and Find Full Text PDFInt J Part Ther
March 2025
Department of Pediatric Radiation Therapy Center/Pediatric Proton Beam Therapy Center, Hebei Yizhou Cancer Hospital, Zhuozhou, China.
Anaplastic pleomorphic xanthoastrocytoma (PXA) is a rare, aggressive WHO grade III tumor that primarily affects children and young adults. Despite surgery being the primary treatment, achieving complete tumor removal is often difficult due to its infiltrative nature, necessitating additional therapies like proton beam therapy (PBT). PBT, known for its precision in targeting tumors while minimizing damage to surrounding healthy tissue, has shown promise in treating malignant gliomas.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4 T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Department of Vascular Surgery, Mount Sinai Hospital, 1468 Madison Ave, New York, NY, 10029, USA.
PURPOSE OF REVIEW: A Ketogenic diet (KD; a diet comprised of 75% fat, 20% protein and 5% carbohydrates) has gained much popularity in recent years, especially regarding neurogliomas (or "gliomas"). This review critically assesses literature on the application of KD throughout the cancer continuum from a Medical Nutrition Therapy (MNT) perspective. RECENT FINDINGS: 2021 revised classification standards for Central Nervous System (CNS) tumors are available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!