The epitaxial growth of GaAs nanowires (NWs) on GaAs(111)B substrates by metal-organic chemical vapor deposition has been systematically investigated as a function of relevant growth parameters, namely, temperature, arsine (AsH3) and trimethyl-gallium (TMGa) flow rates, growth time, and gold nanoparticle catalyst size. When growing in excess As conditions (V/III molar ratios greater than four), the NW growth rate is independent of AsH3 concentration, while it is linearly dependent on TMGa concentration, and it is thermally activated. The NW morphology is primarily affected by the growth temperature, with very uniform NWs growing at around 400 degrees C and severely tapered NWs growing above 500 degrees C. A simple phenomenological expression that allows prediction of the NW growth rate over a wide range of growth parameters has been derived. The growth rate dependence on the seed nanoparticle size has also been investigated, which reveals valuable information on the role of catalyst supersaturation and Ga surface diffusion in the growth mechanism. The NW growth rate is found to be almost independent of Au nanoparticle size down to diameters of approximately 20 nm over a wide range of temperatures and TMGa and AsH3 molar flows. For smaller NW radii, the growth rate becomes size-dependent and is strongly affected by the V/III molar ratio; at relatively low V/III ratios, smaller NWs grow more slowly due to the Gibbs-Thompson effect, while at higher V/III ratios (V/III >50), Ga adatom diffusion becomes the dominant mass-transport mechanism, and smaller NWs grow faster than larger ones. The growth-limiting mechanisms in the above growth regimes are finally discussed, and important quantities such as pyrolysis efficiency of the precursors, supersaturation, and surface diffusion length are deduced by comparing the experimental results with the NW growth rates predicted from first principles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl801986r | DOI Listing |
J Exp Biol
January 2025
Ornis italica, Rome, Italy.
Rapid reduction of body size in populations responding to global warming suggests the involvement of temperature-dependent physiological adjustments during growth, such as mitochondrial alterations, in the efficiency of producing metabolic energy, a process that is poorly explored, especially in endotherms. Here, we examined the mitochondrial metabolism and proteomic profile of red blood cells in relation to body size and cellular energetics in nestling shearwaters (Calonectris diomedea) developing at different natural temperatures. We found that nestlings of warmer nests had lighter bodies and smaller beaks at fledging.
View Article and Find Full Text PDFCurr Neurovasc Res
January 2025
Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Objective: The concept of "time is brain" is crucial for the reperfusion therapy of ischemic stroke. However, the Infarct Growth Rate (IGR) varies among individuals, which is regarded as a more powerful factor than the time when determining infarct volume and its association with clinical outcomes. For stroke patients with a similar infarct volume, a longer time from stroke Onset to Imaging (OTI) correlates with a lower IGR, which may indicate a better prognosis.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, University of Alexandria, Alexandria, EGY.
Aim: Thyroid nodules, based on high-resolution ultrasonography (HRUS), are among the most common endocrine abnormalities that affect the general population because of their high estimated prevalence rates. Fine needle aspiration cytology (FNAC) is a safe, cost-effective modality to differentiate between benign and malignant thyroid nodules based on the Bethesda System for Reporting Thyroid Cytopathology (BSRTC), thus avoiding unnecessary surgery. However, categories III and IV of BSRTC remain a controversial issue in clinical practice, encompassing a wide range of risks of malignancy.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Colorectal cancer (CRC) is a common malignancy with notable recent shifts in its burden distribution. Current data on CRC burden can guide screening, early detection, and treatment strategies for efficient resource allocation.
Methods: This study utilized data from the latest Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!