A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Andreev reflection versus Coulomb blockade in hybrid semiconductor nanowire devices. | LitMetric

Andreev reflection versus Coulomb blockade in hybrid semiconductor nanowire devices.

Nano Lett

Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands.

Published: December 2008

Semiconductor nanowires provide promising low-dimensional systems for the study of quantum transport phenomena in combination with superconductivity. Here we investigate the competition between the Coulomb blockade effect, Andreev reflection, and quantum interference, in InAs and InP nanowires connected to aluminum-based superconducting electrodes. We compare three limiting cases depending on the tunnel coupling strength and the characteristic Coulomb interaction energy. For weak coupling and large charging energies, negative differential conductance is observed as a direct consequence of the BCS density of states in the leads. For intermediate coupling and charging energy smaller than the superconducting gap, the current-voltage characteristic is dominated by Andreev reflection and Coulomb blockade produces an effect only near zero bias. For almost ideal contact transparencies and negligible charging energies, we observe universal conductance fluctuations whose amplitude is enhanced because of Andreev reflection at the contacts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl801454kDOI Listing

Publication Analysis

Top Keywords

andreev reflection
16
coulomb blockade
12
charging energies
8
andreev
4
reflection versus
4
coulomb
4
versus coulomb
4
blockade hybrid
4
hybrid semiconductor
4
semiconductor nanowire
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!