Experiments performed on gas phase [Zn(H2O)N]2+ complexes, for N in the range 4-7, show the ions readily undergo unimolecular (metastable) decay with respect to proton release via the reaction [Zn(H2O)N]2+--> Zn(2+)OH(-)(H2O)M + H3O(+)(H2O)N-M-2. To account for these products, it is proposed that the larger complexes have a stable [Zn(H2O)4]2+ core to which additional molecules are retained in an outer shell through hydrogen bonding. At N = 7, this arrangement would make it possible for proton release to be associated with a chain of up to four water molecules, which equates with ideas proposed for the activity of Zn2+ in metalloenzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp8086804 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
The availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.
The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Sydney, School of Chemistry, Buiding F11, Easyern Avenue, 2006, Sydney, AUSTRALIA.
Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!