Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities.

Nano Lett

Interdisciplinary Program in Nano-Science and Technology, Department of Physics and Astronomy, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-747, Korea.

Published: December 2008

We present a method for assembling silicon nanowires (Si-NWs) in virtually general shape patterns using only conventional microfabrication facilities. In this method, silicon nanowires were functionalized with amine groups and dispersed in deionized water. The functionalized Si-NWs exhibited positive surface charges in the suspensions, and they were selectively adsorbed and aligned onto negatively charged surface regions on solid substrates. As a proof of concepts, we demonstrated transistors based on individual Si-NWs and long networks of Si-NWs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl802570mDOI Listing

Publication Analysis

Top Keywords

conventional microfabrication
8
microfabrication facilities
8
facilities method
8
silicon nanowires
8
large-scale assembly
4
assembly silicon
4
silicon nanowire
4
nanowire network-based
4
network-based devices
4
devices conventional
4

Similar Publications

ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs.

Nat Commun

January 2025

Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e.

View Article and Find Full Text PDF

We present here a passive and label-free droplet microfluidic platform to sort cells stepwise by lactate and proton secretion from glycolysis. A technology developed in our lab, Sorting by Interfacial Tension (SIFT), sorts droplets containing single cells into two populations based on pH by using interfacial tension. Cellular glycolysis lowers the pH of droplets through proton secretion, enabling passive selection based on interfacial tension and hence single-cell glycolysis.

View Article and Find Full Text PDF

Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature.

View Article and Find Full Text PDF

Tuberculosis (TB) is ranked as the third most prevalent infectious disease globally. Early detection and treatment are crucial for effective management. Conventional diagnostic methods primarily rely on sputum samples, which present challenges in accessibility and have limited accuracy in certain populations such as children, individuals with HIV, and those with extrapulmonary TB.

View Article and Find Full Text PDF

Microneedles hold the potential for enabling shallow skin penetration applications where biomarkers are extracted from the interstitial fluid (ISF) and drugs are injected in a painless and effective manner. To this purpose, needles must have an inner channel. Channeled needles were demonstrated using custom silicon microtechnology, having several needle tip geometries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!