Femtosecond pump-probe absorption spectroscopy was employed to investigate ultrafast dynamics in various room temperature ionic liquids (RTILs) based on imidazolium cations, i.e., 1,3-dimethylimidazolium iodide ([DMIM]I), 1-butyl-3-methylimidazolium iodide ([BMIM]I), 1-hexyl-3-methylimidazolium iodide ([HMIM]I), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), and 1-methyl-3-octylimidazolium chloride ([MOIM]Cl). Immediately after photoexcitation, an induced absorption was observed at various probe wavelengths (555-1556 nm). Afterward, the decay of the induced absorption was found to be independent of the alkyl chain length and viscosity of the ionic liquids. Two alternative mechanisms were proposed to explain the dynamics. In a first scenario excess electrons are generated through one-photon photodetachment of halides analogous to aqueous halide photodetachment. The dynamics in this case were analyzed with the help of a competing kinetic model proposed for geminate recombination in aqueous chloride photodetachment. Alternatively, imidazolium cations may be subject to photoionization. The transient NIR absorption can then be assigned to imidazolium dimer radical cations and/or excess electrons which may be formed upon association of imidazolium radicals with their parent cations. Both scenarios suggest that a thorough explanation of the ultrafast dynamics probably requires the implication of cooperative effects in the ionic liquids upon photoexcitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp804861z | DOI Listing |
Org Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204, USA.
Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device's performance.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.
View Article and Find Full Text PDFSmall
January 2025
School of Physics, East China University of Science and Technology, Shanghai, 200237, China.
Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!