Femtosecond UV excitation in imidazolium-based ionic liquids.

J Phys Chem B

Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany.

Published: December 2008

Femtosecond pump-probe absorption spectroscopy was employed to investigate ultrafast dynamics in various room temperature ionic liquids (RTILs) based on imidazolium cations, i.e., 1,3-dimethylimidazolium iodide ([DMIM]I), 1-butyl-3-methylimidazolium iodide ([BMIM]I), 1-hexyl-3-methylimidazolium iodide ([HMIM]I), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), and 1-methyl-3-octylimidazolium chloride ([MOIM]Cl). Immediately after photoexcitation, an induced absorption was observed at various probe wavelengths (555-1556 nm). Afterward, the decay of the induced absorption was found to be independent of the alkyl chain length and viscosity of the ionic liquids. Two alternative mechanisms were proposed to explain the dynamics. In a first scenario excess electrons are generated through one-photon photodetachment of halides analogous to aqueous halide photodetachment. The dynamics in this case were analyzed with the help of a competing kinetic model proposed for geminate recombination in aqueous chloride photodetachment. Alternatively, imidazolium cations may be subject to photoionization. The transient NIR absorption can then be assigned to imidazolium dimer radical cations and/or excess electrons which may be formed upon association of imidazolium radicals with their parent cations. Both scenarios suggest that a thorough explanation of the ultrafast dynamics probably requires the implication of cooperative effects in the ionic liquids upon photoexcitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp804861zDOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
ultrafast dynamics
8
imidazolium cations
8
induced absorption
8
excess electrons
8
femtosecond excitation
4
excitation imidazolium-based
4
ionic
4
imidazolium-based ionic
4
liquids
4

Similar Publications

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device's performance.

View Article and Find Full Text PDF

The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!