Transgenic herbicide-resistant rice is needed to control weeds that have evolved herbicide resistance, as well as for the weedy (feral, red) rice problem, which has been exacerbated by shifting to direct seeding throughout the world-firstly in Europe and the Americas, and now in Asia, as well as in parts of Africa. Transplanting had been the major method of weedy rice control. Experience with imidazolinone-resistant rice shows that gene flow to weedy rice is rapid, negating the utility of the technology. Transgenic technologies are available that can contain herbicide resistance within the crop (cleistogamy, male sterility, targeting to chloroplast genome, etc.), but such technologies are leaky. Mitigation technologies tandemly couple (genetically link) the gene of choice (herbicide resistance) with mitigation genes that are neutral or good for the crop, but render hybrids with weedy rice and their offspring unfit to compete. Mitigation genes confer traits such as non-shattering, dwarfism, no secondary dormancy and herbicide sensitivity. It is proposed to use glyphosate and glufosinate resistances separately as genes of choice, and glufosinate, glyphosate and bentazone susceptibilities as mitigating genes, with a six-season rotation where each stage kills transgenic crop volunteers and transgenic crop x weed hybrids from the previous season.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.1754 | DOI Listing |
Front Plant Sci
December 2024
Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China.
In order to improve both resistance to lepidopteran pests and resistance to the herbicide imazethapyr in mainstay varieties of the Huang-Huai rice region, Sanming dominant genic male sterile (S-DGMS) rice was used as a platform to facilitate the pyramiding of functional genes and the replacement of the genomic background. Twelve novel lines were developed, each carrying a crystal toxin gene conferring resistance to lepidopteran pests and the allele conferring resistance to herbicide imazethapyr in the background of a mainstay variety. The genomic background of the 12 novel lines was examined using 48 specified molecular markers, and each line carried less than two polymorphic markers relative to the corresponding mainstay variety.
View Article and Find Full Text PDFSci Rep
December 2024
College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China.
To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.
View Article and Find Full Text PDFMol Ecol
December 2024
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
-cinnamoyltyramine (NTCT) has been identified from an allelopathic Vietnamese rice accession OM 5930. This study employed bioassays to analyze NTCT's effects on shoot and root growth of multiple test and weed species. NTCT demonstrated potent inhibitory effects on cress, lettuce, canola, palmer amaranth, timothy, barnyardgrass, red sprangletop, and weedy rice, with increasing concentrations leading to substantial reductions in growth in all species.
View Article and Find Full Text PDFBiology (Basel)
September 2024
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Songhu Road 2005, Shanghai 200438, China.
Lignin is a key metabolite for terrestrial plants. Two types of aromatic amino acids, phenylalanine (Phe) and tyrosine (Tyr), serve as the precursors for lignin biosynthesis. In most plant species, Phe is deaminated by Phe ammonia-lyase (PAL) to initiate lignin biosynthesis, but in grass species, Phe and Tyr are deaminated by Phe/Tyr ammonia-lyase (PTAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!