Background: Continuous high global tuberculosis (TB) mortality rates and variable vaccine efficacy of Mycobacterium bovis Bacille Calmette-Guérin (BCG) motivate the search for better vaccine regimes. Relevant models are required to downselect the most promising vaccines entering clinical efficacy testing and to identify correlates of protection.

Methods And Findings: Here, we evaluated immunogenicity and protection against Mycobacterium tuberculosis in rhesus monkeys with two novel strategies: BCG boosted by modified vaccinia virus Ankara expressing antigen 85A (MVA.85A), and attenuated M. tuberculosis with a disrupted phoP gene (SO2) as a single-dose vaccine. Both strategies were well tolerated, and immunogenic as evidenced by induction of specific IFNgamma responses. Antigen 85A-specific IFNgamma secretion was specifically increased by MVA.85A boosting. Importantly, both MVA.85A and SO2 treatment significantly reduced pathology and chest X-ray scores upon infectious challenge with M. tuberculosis Erdman strain. MVA.85A and SO2 treatment also showed reduced average lung bacterial counts (1.0 and 1.2 log respectively, compared with 0.4 log for BCG) and significant protective effect by reduction in C-reactive protein levels, body weight loss, and decrease of erythrocyte-associated hematologic parameters (MCV, MCH, Hb, Ht) as markers of inflammatory infection, all relative to non-vaccinated controls. Lymphocyte stimulation revealed Ag85A-induced IFNgamma levels post-infection as the strongest immunocorrelate for protection (spearman's rho: -0.60).

Conclusions: Both the BCG/MVA.85A prime-boost regime and the novel live attenuated, phoP deficient TB vaccine candidate SO2 showed significant protective efficacy by various parameters in rhesus macaques. Considering the phylogenetic relationship between macaque and man and the similarity in manifestations of TB disease, these data support further development of these primary and combination TB vaccine candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666807PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005264PLOS

Publication Analysis

Top Keywords

mva85a boosting
8
attenuated phop
8
phop deficient
8
protective efficacy
8
tuberculosis rhesus
8
rhesus macaques
8
mva85a so2
8
so2 treatment
8
treatment reduced
8
tuberculosis
6

Similar Publications

Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A).

View Article and Find Full Text PDF

Background: BCG confers reduced, variable protection against pulmonary tuberculosis. A more effective vaccine is needed. We evaluated the safety and immunogenicity of candidate regimen ChAdOx1 85A-MVA85A compared with BCG revaccination among Ugandan adolescents.

View Article and Find Full Text PDF

A vaccine against tuberculosis (TB), a disease resulting from infection with Mycobacterium tuberculosis (M.tb), is urgently needed to prevent more than a million deaths per year. Bacillus Calmette-Guérin (BCG) is the only available vaccine against TB but its efficacy varies throughout the world.

View Article and Find Full Text PDF

IL-12 DNA Displays Efficient Adjuvant Effects Improving Immunogenicity of Ag85A in DNA Prime/MVA Boost Immunizations.

Front Cell Infect Microbiol

June 2021

Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.

() infection is one of the leading causes of death worldwide. The Modified Vaccinia Ankara (MVA) vaccine vector expressing the mycobacterial antigen 85A (MVA85A) was demonstrated to be safe, although it did not improve BCG efficacy, denoting the need to search for improved tuberculosis vaccines. In this work, we investigated the effect of IL-12 DNA -as an adjuvant- on an Ag85A DNA prime/MVA85A boost vaccination regimen.

View Article and Find Full Text PDF

Background: This phase I trial evaluated the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime-MVA85A boost, previously demonstrated to be protective in animal studies, in healthy UK adults.

Methods: We enrolled 42 healthy, BCG-vaccinated adults into 4 groups: low dose Starter Group (n = 6; ChAdOx1 85A alone), high dose groups; Group A (n = 12; ChAdOx1 85A), Group B (n = 12; ChAdOx1 85A prime - MVA85A boost) or Group C (n = 12; ChAdOx1 85A - ChAdOx1 85A prime - MVA85A boost). Safety was determined by collection of solicited and unsolicited vaccine-related adverse events (AEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!