Neonatal gene therapy has the potential to ameliorate abnormalities before disease onset. Our gene knockout of arginase I (AI) deficiency is characterized by increasing hyperammonemia, neurological deterioration, and early death. We constructed a helper-dependent adenoviral vector (HDV) carrying AI and examined for correction of this defect. Neonates were administered 5 x 10(9) viral particles/g and analyzed for survival, arginase activity, and ammonia and amino acids levels. The life expectancy of arg(-/-) mice increased to 27 days while controls died at 14 days with hyperammonemia and in extremis. Death correlated with a decrease in viral DNA/RNA per cell as liver mass increased. Arginase assays demonstrated that vector-injected hepatocytes had ~20% activity of heterozygotes at 2 weeks of age. Hepatic arginine and ornithine in treated mice were similar to those of saline-injected heterozygotes at 2 weeks, whereas ammonia was normal. By 26 days, arginase activity in the treated arg(-/-) livers declined to <10%, and arginine and ornithine increased. Ammonia levels began increasing by day 25, suggesting the cause of death to be similar to that of uninjected arg(-/-) mice, albeit at a later time. These studies demonstrate that the AI deficient newborn mouse can be temporarily corrected and rescued using a HDV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835205PMC
http://dx.doi.org/10.1038/mt.2009.65DOI Listing

Publication Analysis

Top Keywords

arginase deficiency
8
helper-dependent adenoviral
8
adenoviral vector
8
arginase activity
8
heterozygotes weeks
8
arginase
5
short-term correction
4
correction arginase
4
deficiency neonatal
4
neonatal murine
4

Similar Publications

[Tandem mass spectrometry screening and genetic analysis of neonates with Urea cycle disorders].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Department of Medical Genetics and Prenatal Diagnosis, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu 221009, China.

Objective: To explore the results of four types of Urea cycle disorders (UCDs) in newborns from the Xuzhou region, assess the efficacy of newborn screening by tandem mass spectrometry (MS/MS), and analyze their genetic characteristics.

Methods: A retrospective analysis was performed using tandem mass spectrometry to screen for inherited metabolic disorders in 691 712 newborns at the Maternal and Child Health Care Hospital of Xuzhou from November 2015 to December 2023. Ten children (cases 1-10) were diagnosed with Ornithine transcarbamylase deficiency (OTCD), Carbamoylphosphate synthase 1 deficiency (CPS1D), Arginase deficiency (ARGD), and Argininosuccinate synthase deficiency (ASSD) based on MS/MS and genetic testing.

View Article and Find Full Text PDF

L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.

View Article and Find Full Text PDF

Arginase-II gene deficiency reduces skeletal muscle aging in mice.

Aging (Albany NY)

December 2024

Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.

Age-associated sarcopenia decreases mobility and is promoted by cell senescence, inflammation, and fibrosis. The mitochondrial enzyme arginase-II (Arg-II) plays a causal role in aging and age-associated diseases. Therefore, we aim to explore the role of Arg-II in age-associated decline of physical activity and skeletal muscle aging in a mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Arginase 1 (ARG1) deficiency, which leads to high levels of arginine in the blood and neurological issues, highlighting the need for better variant classification.
  • Researchers analyzed both published and unpublished gene variants related to ARG1 deficiency using established genetic guidelines and AI tools for accurate classification.
  • Results revealed that a significant number of variants are classified as uncertain in terms of their pathogenicity, emphasizing the need for more research to understand their impact and accurately estimate the global prevalence of ARG1 deficiency.
View Article and Find Full Text PDF

Potential role of ARG1 c.57G > A variant in Argininemia.

Genes Genomics

November 2024

Pediatric Endocrinology and Inherited Metabolic Department, Guangdong Women and Children Hospital, Guangzhou, 511442, Guangdong, China.

Article Synopsis
  • Argininemia is a rare genetic disorder caused by a deficiency of the arginase 1 enzyme, leading to severe health issues like spastic paraplegia and seizures; a healthy baby with mildly elevated arginine levels was identified in neonatal screening.
  • Advanced genetic analysis methods, including Next Generation Sequencing and Sanger sequencing, were used to investigate the patient's genetic details, revealing a specific homozygous variant (c.57G > A) inherited from both parents.
  • The study presents novel findings that this synonymous variant affects alternative splicing of the ARG1 gene, resulting in decreased expression of the associated mRNA and protein levels, and suggests the involvement of Nonsense-mediated mRNA decay in this process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!