Validation of Fanconi anemia complementation Group A assignment using molecular analysis.

Genet Med

Department of Molecular and Medical Genetics, Clinical Genetics Laboratories, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.

Published: March 2009

Purpose: Fanconi anemia is a genetically heterogeneous chromosomal breakage disorder exhibiting a high degree of clinical variability. Clinical diagnoses are confirmed by testing patient cells for increased sensitivity to crosslinking agents. Fanconi anemia complementation group assignment, essential for efficient molecular diagnosis of the disease, had not been validated for clinical application before this study. The purpose of this study was (1) confirmation of the accuracy of Fanconi anemia complementation group assignment to Group A (FANCA) and (2) development of a rapid mutation detection strategy that ensures the efficient capture of all FANCA mutations.

Methods: Using fibroblasts from 29 patients, diagnosis of Fanconi anemia and assignment to complementation Group A was made through breakage analysis studies. FANCA coding and flanking sequences were analyzed using denaturing high pressure liquid chromatography, sequencing, and multiplex ligation-dependent probe amplification. Patients in which two mutations were not identified were analyzed by cDNA sequencing. Patients with no mutations were sequenced for mutations in FANCC, G, E, and F.

Results: Of the 56 putative mutant alleles studied, 89% had an identifiable FANCA pathogenic mutation. Eight unique novel mutations were identified.

Conclusion: Complementation assignment to Group A was validated in a clinical laboratory setting using our FANCA rapid molecular testing strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/GIM.0b013e318193ba67DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
20
complementation group
16
anemia complementation
12
group assignment
12
validated clinical
8
assignment group
8
patients mutations
8
group
6
anemia
5
complementation
5

Similar Publications

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare inherited disorder characterized by progressive bone marrow failure (BMF) and a predisposition to malignancy. Systemic reactive-oxygen species (ROS) and increased sensitivity of FA hematopoietic progenitors to ROS play a key role in the pathogenesis of BMF. Treatment with antioxidants improve hematopoietic function in Fancc-/- mice.

View Article and Find Full Text PDF

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!