Purpose: To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning.

Materials And Methods: Animal protocols were approved by the Institutional Administrative Panel on Laboratory Animal Care. Transduction of human MSCs by using different doses of adenovirus that contained a cytomegalovirus (CMV) promoter driving the mutant herpes simplex virus type 1 thymidine kinase reporter gene (Ad-CMV-HSV1-sr39tk) was characterized in a cell culture. A total of 2.25 x 10(6) transduced (n = 5) and control nontransduced (n = 5) human MSCs were injected into the myocardium of 10 rats, and reporter gene expression in human MSCs was visualized with micro-PET by using the radiotracer 9-(4-[fluorine 18]-fluoro-3-hydroxymethylbutyl)-guanine (FHBG). Different numbers of transduced human MSCs suspended in either phosphate-buffered saline (PBS) (n = 4) or matrigel (n = 5) were injected into the myocardium of nine swine, and gene expression was visualized with a clinical PET-CT. For analysis of cell culture experiments, linear regression analyses combined with a t test were performed. To test differences in radiotracer uptake between injected and remote myocardium in both rats and swine, one-sided paired Wilcoxon tests were performed. In swine experiments, a linear regression of radiotracer uptake ratio on the number of injected transduced human MSCs was performed.

Results: In cell culture, there was a viral dose-dependent increase of gene expression and FHBG accumulation in human MSCs. Human MSC viability was 96.7% (multiplicity of infection, 250). Cardiac FHBG uptake in rats was significantly elevated (P < .0001) after human MSC injection (0.0054% injected dose [ID]/g +/- 0.0007 [standard deviation]) compared with that in the remote myocardium (0.0003% ID/g +/- 0.0001). In swine, myocardial radiotracer uptake was not elevated after injection of up to 100 x 10(6) human MSCs (PBS group). In the matrigel group, signal-to-background ratio increased to 1.87 after injection of 100 x 10(6) human MSCs and positively correlated (R(2) = 0.97, P < .001) with the number of administered human MSCs.

Conclusion: Reporter gene imaging in human MSCs can be translated to large animals. The study highlights the importance of co-administering a "scaffold" for increasing intramyocardial retention of human MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702468PMC
http://dx.doi.org/10.1148/radiol.2513081616DOI Listing

Publication Analysis

Top Keywords

human mscs
40
gene expression
16
reporter gene
16
human
15
cell culture
12
radiotracer uptake
12
mscs
11
expression human
8
human mesenchymal
8
mesenchymal stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!