Escherichia coli inorganic pyrophosphatase (E-PPase) is a tetranuclear divalent metal dependent enzyme that catalyzes the reversible interconversion of pyrophosphate (PPi) and orthophosphate (Pi), with Mg(2+) conferring the highest activity. In the present work, the reaction mechanism of E-PPase is investigated using the hybrid density functional theory (DFT) method B3LYP with a large model of the active site. Our calculated results shed further light on the detailed reaction mechanism. In particular, the important residue Asp67, either protonated or unprotonated, was taken into account in the present calculations. Our calculations indicated that a protonated Asp67 is crucial for the reverse reaction to take place; however, it is lost sight of in the forward reaction. The bridging hydroxide is shown to be capable of performing nucleophilic in-line attack on the substrate from its bridging position in the presence of four Mg(2+) ions. During the catalysis, the roles of the four magnesium ions are suggested to provide a necessary conformation of the active site, facilitate the nucleophile formation and substrate orientation, and stabilize the trigonal bipyramid transition state, thereby lowering the barrier for the nucleophilic attack.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp810003wDOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli inorganic
8
inorganic pyrophosphatase
8
reaction mechanism
8
active site
8
dft study
4
study mechanism
4
mechanism escherichia
4
pyrophosphatase escherichia
4
pyrophosphatase e-ppase
4

Similar Publications

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Background: In developing countries, due to improper management of domestic animals' exposures, under-five (U5) children have been affected by diarrhoea. However, there is no evidence that shows the presence of diarrhoea-causing pathogens in the faeces of U5 children and animals residing in the same houses in the Sidama region, Ethiopia.

Methods: A laboratory-based matched case-control study was conducted on children aged 6-48 months in the Sidama region of Ethiopia from February to June 2023.

View Article and Find Full Text PDF

In the current study, the analytical sensitivity, analytical specificity, reproducibility, anti-interferences ability, and clinical performance of the QIAstat-Dx Gastrointestinal Panel (GIP) system were evaluated using pooled stool samples. Results showed that the pooled sample test detected the selected ten targets exclusively, with no cross reaction with any other targets of common enteropathogens. The analytical sensitivity of the pooled sample test on QIAstat-Dx GIP system was 10 CFU/ml for Shigella spp.

View Article and Find Full Text PDF

Acrylamide/Alyssum campestre seed gum hydrogels enhanced with titanium carbide: Rheological insights for cardiac tissue engineering.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.

This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!