Download full-text PDF

Source

Publication Analysis

Top Keywords

[imaging gliomas
4
gliomas adults]
4
[imaging
1
adults]
1

Similar Publications

Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

: Cerebral intra-arterial chemotherapy (CIAC) has been demonstrated to achieve tumoricidal concentrations in cerebral tumour cells that are otherwise unachievable due to the presence of the blood-brain barrier. In this study, we sought to analyze the safety of CIAC in a cohort of patients treated at the Centre intégré universitaire de santé et de services sociaux de l'Estrie-Centre hospitalier universitaire de Sherbrooke (CIUSSS-CHUS). : Treatments consisted of monthly CIAC.

View Article and Find Full Text PDF

Background/objectives: In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images.

View Article and Find Full Text PDF

Intraoperative ultrasound (ioUS) provides real-time imaging during neurosurgical procedures, with advantages such as portability and cost-effectiveness. Accurate tumor segmentation has the potential to substantially enhance the interpretability of ioUS images; however, its implementation is limited by persistent challenges, including noise, artifacts, and anatomical variability. This study aims to develop a convolutional neural network (CNN) model for glioma segmentation in ioUS images via a multicenter dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!