Pandoraea sp. strain MCB032 was isolated as an emerging chlorobenzene degrader from a functionally stable bioreactor where species succession had occurred. In this study, two gene clusters encoding chlorobenzene metabolic functions have been cloned. Within the cbs gene cluster, CbsA and CbsB are similar to the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase in Ralstonia sp. JS705 and shown to transform chlorobenzene to 3-chlorocatechol. The clc gene cluster shows strong similarity to the clc genes of Ralstonia sp. JS705 and encodes chlorocatechol 1,2-dioxygenase (ClcA) and other enzymes, which catalyze the conversion of chlorocatechol to 3-oxoadipate. The Michaelis constants (K (m)) values of ClcA for catechol, 3-methylcatechol and 3-chlorocatechol were determined as 10.0, 8.9 and 3.4 muM, respectively. CbsX, a putative transport protein present in the cbs cluster of strain MCB032 but not in those of other chlorobenzene degraders, shows 76 and 53% identities to two previously identified transport proteins involved in toluene degradation, TbuX from Ralstonia pickettii PKO1 and TodX from Pseudomonas putida F1. The presence of the transport protein in strain MCB032 likely provides a mechanistic explanation for its higher chlorobenzene affinity and may well be the basis for the competitive advantage of this strain in the bioreactor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-009-0476-9DOI Listing

Publication Analysis

Top Keywords

strain mcb032
16
gene clusters
8
pandoraea strain
8
gene cluster
8
ralstonia js705
8
transport protein
8
chlorobenzene
7
strain
5
genetic biochemical
4
biochemical analyses
4

Similar Publications

Chlorobenzenes are ubiquitously distributed, highly persistent, and toxic environmental contaminants. Pandoraea pnomenusa MCB032 was isolated as a new dominant chlorobenzene-utilizing strain from a functionally stable bioreactor during the treatment of chlorobenzenes when strain Burkholderia sp. JS150 disappeared.

View Article and Find Full Text PDF

Pandoraea sp. strain MCB032 was isolated as an emerging chlorobenzene degrader from a functionally stable bioreactor where species succession had occurred. In this study, two gene clusters encoding chlorobenzene metabolic functions have been cloned.

View Article and Find Full Text PDF

Evidence of species succession during chlorobenzene biodegradation.

Biotechnol Bioeng

January 2008

Department of Chemical Engineering and Chemical Technology, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom.

We have previously reported the disappearance of a specific strain degrading chlorobenzene from a functionally stable bioreactor. In the present work, we investigated this species succession and isolated a new dominant strain, identified as Pandoraea pnomenusa sp. strain MCB032.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!