Background: Homeobox genes are essential for embryonic patterning and cell fate determination. They are regulated mostly at the transcriptional level. In particular, Prep1 regulates Hox transcription in association with Pbx proteins. Despite its nuclear role as a transcription factor, Prep1 is located in the cytosol of mouse oocytes from primary to antral follicles. The homeodomain factor Bicoid (Bcd) has been shown to interact with 4EHP (eukaryotic translation initiation factor 4E homolog protein) to repress translation of Caudal mRNA and to drive Drosophila embryo development. Interestingly, Prep1 contains a putative binding motif for 4EHP, which may reflect a novel unknown function.

Methodology/principal Findings: In this paper we show by confocal microscopy and deconvolution analysis that Prep1 and 4EHP co-localize in the cytosol of growing mouse oocytes, demonstrating their interaction by co-immunoprecipitation and pull-down experiments. A functional 4EHP-binding motif present in Prep1 has been also identified by mutagenesis analysis. Moreover, Prep1 inhibits (>95%) the in vitro translation of a luciferase reporter mRNA fused to the Hoxb4 3'UTR, in the presence of 4EHP. RNA electrophoretic mobility shift assay was used to demonstrate that Prep1 binds the Hoxb4 3'UTR. Furthermore, conventional histology and immunohistochemistry has shown a dramatic oocyte growth failure in hypomorphic mouse Prep1(i/i) females, accompanied by an increased production of Hoxb4. Finally, Hoxb4 overexpression in mouse zygotes showed a slow in vitro development effect.

Conclusions: Prep1 has a novel cytoplasmic, 4EHP-dependent, function in the regulation of translation. Mechanistically, the Prep1-4EHP interaction might bridge the 3'UTR of Hoxb4 mRNA to the 5' cap structure. This is the first demonstration that a mammalian homeodomain transcription factor regulates translation, and that this function can be possibly essential for the development of female germ cells and involved in mammalian zygote development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664923PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005213PLOS

Publication Analysis

Top Keywords

prep1
8
transcription factor
8
mouse oocytes
8
analysis prep1
8
hoxb4 3'utr
8
hoxb4
6
translation
6
4ehp
5
cytoplasmic prep1
4
prep1 interacts
4

Similar Publications

The widespread ability of proteins and peptides to self-assemble by forming cross-β structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-β association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties.

View Article and Find Full Text PDF

Aim: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation.

Methods: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR.

View Article and Find Full Text PDF

PREP1 is a homeodomain transcription factor that impairs metabolism and is involved in age-related aortic thickening. In this study, we evaluated the role of PREP1 on endothelial function. Mouse Aortic Endothelial Cells (MAECs) transiently transfected with a cDNA showed a 1.

View Article and Find Full Text PDF

Molecular Mechanisms of Lupus Susceptibility Allele PBX1D.

J Immunol

September 2023

Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health, San Antonio, TX.

Pre-B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells.

View Article and Find Full Text PDF

A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!