Background: Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia.
Methodology/principal Findings: The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng.
Conclusions/significance: The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664899 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005170 | PLOS |
Front Vet Sci
December 2024
Bedele District Livestock Development and Health Office, Bedele, Ethiopia.
This study assesses the prevalence of bovine trypanosomes and the density of tsetse flies in the Yem Special District, Southern Ethiopia, highlighting the disease's significant impact on livestock health and agricultural productivity. Conducted between May 2022 and January 2023, the cross-sectional survey analyzed 960 blood samples for trypanosomes prevalence and tsetse fly density. Results revealed a 10.
View Article and Find Full Text PDFBMC Vet Res
December 2024
College of Veterinary Medicine, Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, US.
Background: Diagnostic tests and knowledge of their diagnostic accuracies are important for animal trypanosomosis surveillance and treatment.
Methodology: A cross-sectional study was conducted in November 2021 to compare the performance of rapid diagnostic test (RDT) and PCR-based assay for the detection of trypanosome infections. Random sampling and probability proportional to size sampling were used to sample study households and animals from the sampled household respectively.
Vet Med Sci
January 2025
Faculty of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia.
In sub-Saharan Africa, animal trypanosomosis is a wasting disease that reduces livestock's health and productivity. A recurrent cross-sectional investigation was carried out in the Dara district of the Sidama region in dry and wet seasons to estimate the apparent density of Glossina spp. and the seasonal prevalence of bovine trypanosomosis.
View Article and Find Full Text PDFParasite Epidemiol Control
November 2024
Department of Biomedical Science, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia.
PLoS Negl Trop Dis
October 2024
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
Background: Tsetse flies (Glossina) transmit species of Trypanosoma which cause human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). Understanding the epidemiology of this disease and controlling the vector rationally requires analysis of the abundance, age structure, infection rates and feeding patterns of tsetse populations.
Methods: We analysed a population of G.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!