Interferometric sensing platform with dielectric nanostructured thin films.

Opt Express

Carleton University, Department of Electronics, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada.

Published: April 2009

A new interferometer-based optical sensing platform with nanostructured thin films of ZrO2 or TiO2 as sensing environment has been developed. With the application of an IC compatible Si(3)N(4) waveguide technology, Mach-Zehnder interferometer devices have been fabricated. The application of the glancing angle deposition technique allowed fabrication of nanostructured thin films as the optical sensing environment. Sensing ability of fabricated devices has been demonstrated through the refractive index measurement of a known gas. The transmission spectra and time response measurements have demonstrated a maximum phase shift of Delta phi=pi/10 and a |Delta P(out)|=0.65 dBm. Devices with TiO2 film on the sensing region performed much better than devices with ZrO2, with sensitivity twice as high.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.006655DOI Listing

Publication Analysis

Top Keywords

nanostructured thin
12
thin films
12
sensing platform
8
optical sensing
8
sensing environment
8
sensing
5
interferometric sensing
4
platform dielectric
4
dielectric nanostructured
4
films interferometer-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!