We report a novel process technology of hemispherical shaped microlenses, using isotropic wet etching of silicon in an acid solution to produce the microlenses molds. Governed by process parameters such as temperature and etchant concentration, the isotropic wet etching is controlled to minimize various defects that appear during the molding creation. From the molds, microlenses are fabricated in polymer by conventional replication techniques such as hot embossing and UV-molding. The characterization of molds and measurements of replicated microlenses demonstrate high smoothness of the surfaces, excellent repeatability of mold fabrication and good optical properties. Using the proposed method, a wide range of lens geometries and lens arrays can be achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.17.006283 | DOI Listing |
Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work.
View Article and Find Full Text PDFMaterials (Basel)
January 2024
Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.
Int J Biol Macromol
April 2024
College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China; Engineering Research Center of Bamboo Advanced Materials and Conversion of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China. Electronic address:
Bamboo, featuring fast growth rate and high cellulose content, is considered to be one of the most attractive feedstocks for degradable bio-materials as a substitute for plastics. However, those was limited to the fields of bamboo structural materials mainly by physical processes. Herein, we report a facile continuous wet extrusion strategy for scalable manufacturing of anisotropic regenerated cellulose films in alkali/urea aqueous solution for the first time.
View Article and Find Full Text PDFTheranostics
March 2024
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2024
Dept. de Ingeniería Mecánica y de Materiales, Instituto de Ingeniería Mecánica y Biomecánica de Valencia - I2MB, Universitat Politècnica de València, Camino de Vera, Building 5E, 46022 Valencia, Spain.
Background And Objective: Detailed finite element models based on medical images (μ-CT) are commonly used to analyze the mechanical behavior of bone at microscale. In order to simulate the tissue failure onset, isotropic failure criteria of lamellar tissue are often used, despite its non-isotropic and heterogeneous nature. The main goal of the present work is to estimate the in-plane ultimate stress of lamellar bone, considering the influence of mineral content and the porosity due to the osteocyte lacunae concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!