Beta-thalassemia is a genetic disorder caused by mutations in the beta-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. However, the use of these molecules for gene targeting requires homopurine tracts to facilitate triple helix formation. Alternatively, to achieve binding to mixed-sequence target sites for the induced gene correction, we have used pseudo-complementary PNAs (pcPNAs). Due to steric hindrance, pcPNAs are unable to form pcPNA-pcPNA duplexes but can bind to complementary DNA sequences via double duplex-invasion complexes. We demonstrate here that pcPNAs, when co-transfected with donor DNA fragments, can promote single base pair modification at the start of the second intron of the beta-globin gene. This was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta globin fusion gene. We also demonstrate that pcPNAs are effective in stimulating recombination in human fibroblast cells in a manner dependent on the nucleotide excision repair factor, XPA. These results suggest that pcPNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells without purine sequence restriction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699504PMC
http://dx.doi.org/10.1093/nar/gkp217DOI Listing

Publication Analysis

Top Keywords

peptide nucleic
8
nucleic acids
8
beta-globin gene
8
demonstrate pcpnas
8
pcpnas effective
8
gene
5
pcpnas
5
targeted correction
4
correction thalassemia-associated
4
thalassemia-associated beta-globin
4

Similar Publications

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy.

Cells

January 2025

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain.

Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions.

View Article and Find Full Text PDF

Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

View Article and Find Full Text PDF

Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.

Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!