Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpp024 | DOI Listing |
Food Chem X
January 2025
Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295 Istanbul, Türkiye.
This study investigated the properties of films based on avocado () seed starch. A full factorial experimental design was performed using different amounts of starch (3-5 %) and glycerol (0.75-1.
View Article and Find Full Text PDFPeerJ
January 2025
Biology, York University, Toronto, Ontario, Canada.
Plant responses to changes in temperature can be a key factor in predicting the presence and managing invasive plant species while conserving resident native plant species in dryland ecosystems. Climate can influence germination, establishment, and seedling biomass of both native and invasive plant species. We tested the hypothesis that common and widely distributed native and an invasive plant species in dryland ecosystems in California respond differently to increasing temperatures.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, Bilkent University, 06800, Ankara, Turkey.
Patterns are encountered and employed in nature, such as in the communication or growth of organisms and sophisticated behaviors such as camouflage. Artificial patterns are not rare, either. They can also be used in sensing, recording information, and manipulating material properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze st., Novosibirsk 630090, Russian Federation.
This work investigates the solid-state reaction between iridium and zirconium carbide, resulting in the formation of carbon and ZrIr-an intermetallic compound of great interest for modern high-temperature materials science. We have found a transition of kinetic regimes in this reaction: from linear kinetics (when the chemical reaction is a limiting stage) at 1500 and 1550 °C to 'non-parabolic kinetics' at 1600 °C. Non-parabolic kinetics is characterized by the thickness of the product layer being proportional to a power of time less than 1/2.
View Article and Find Full Text PDFSmall
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
Separators are critical components of zinc-metal batteries (ZMBs). Despite their high ionic conductivity and excellent electrolyte retention, the widely used glass fiber (GF) membranes suffer from poor mechanical stability and cannot suppress dendrite growth, leading to rapid battery failure. Contrarily, polymer-based separators offer superior mechanical strength and facilitate more homogeneous zinc (Zn) deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!