The objective of this study was to develop a multiparametric flow cytometry assay to simultaneously quantify isolated pancreatic islet cell viability, apoptosis, and glucose-induced metabolic flux. INS-1 and rat islet beta-cells were stained with fluorescent probes for cell viability (ToPro3), apoptosis (Annexin V and VADFMK), and intracellular calcium (Ca2+(i)) (Fura Red), stimulated with glucose, and analyzed on a FACS Vantage flow cytometer. Glucose-induced metabolic activity was indicated by changes in Fura Red fluorescence and the autofluorescence of the pyridine [NAD(P)H] and flavin (FAD/FMN) nucleotides. Rat islets cultured under conditions of proinflammatory cytokine-induced oxidative stress were evaluated by flow cytometry and transplantation into diabetic mice. INS-1 and rat islet beta-cell health and metabolic activity were quantified in response to elevated glucose dose and inhibitors of glycolysis and mitochondrial function. Changes in metabolite fluorescence were converted to an area under the curve (AUC) value. Rat islets cultured under oxidative stress conditions showed decreased viability, increased apoptosis, and decreased glucose-induced metabolic activity indicated by reduced AUC for pyridine and flavin nucleotides and Ca2+(i). Reduced metabolite AUC measured by flow cytometry correlated with the inability to reverse diabetes in mice. Single cell flow cytometry can simultaneously quantify both overall islet cell health and beta-cell glucose responsiveness as indicators of functional potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368908787648038 | DOI Listing |
Mol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Cell Div
January 2025
Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.
Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.
Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.
Cell Div
January 2025
Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
Objective: This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.
Methods: ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry.
Breast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFMol Med
January 2025
Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, 11030, USA.
Background: The process of B cell activation and plasma cell (PC) formation involves morphological, transcriptional, and metabolic changes in the B cell. Blocking or reducing PC differentiation is one approach to treat autoimmune diseases that are characterized by the presence of pathogenic autoantibodies. Recent studies have suggested the potential of myricetin, a natural flavonoid with anti-inflammatory and antioxidant properties, to block or reduce PC differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!