We report the design and testing of a novel linear scanning periodic optical delay line (ODL) by use of a helicoid reflective mirror based on a tilted parabolic generatrix that was driven by an electrical motor for a periodic change in the optical path length of the reflected light beam. The divergence and pulse front distortion of the optical beam reflected by the helicoid reflective mirror were simulated based on differential geometry. With a round-trip pass arrangement, a scanning range of delay time as large as 100 ps was obtained by spinning the helicoid reflective mirror with a pitch distance of 7.5 mm. This periodic ODL was used in an optical second-harmonic generation autocorrelator to test the linearity and temporal resolution in comparison with the autocorrelation signal obtained using an ODL structured with a motorized linear translation stage. Experiments demonstrate that our helicoid optical delay device may provide exceptional performance for optical interference, high-resolution terahertz time-domain spectroscopy, and general optical pump-probe experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.48.001998 | DOI Listing |
Nano Lett
December 2024
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Ultrasensitive, rapid, and reliable biomolecular sensing is essential for biomedical diagnostics, requiring real-time monitoring and detection of trace samples. Optical sensing, particularly plasmonic biosensing, meets these demands through noninvasive, high-sensitivity detection based on the interaction between light and molecules. Here, we present novel plasmonic metamaterial-based sensing strategy, utilizing the circular dichroism (CD) response of grating-coupled surface plasmon resonance (SPR) from chiral nanoparticle grating structure (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
Thermochromic materials have found widespread commercial use in packaging as temperature indicators. Often, these products utilize leuco dyes that are mixed into conventional polymeric resins to prepare coatings or films that exhibit temperature-dependent color change. Here, we consider a distinctive approach to thermochromism via the selective reflection of liquid crystalline elastomers that retain the helicoidal structure of the cholesteric phase (CLCEs).
View Article and Find Full Text PDFAnn Bot
June 2024
School of Biological Sciences, University of Bristol, Bristol, UK.
Background And Aims: Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa.
View Article and Find Full Text PDFA coupled mode theory based on Takagi-Taupin equations describing electromagnetic scattering from distorted periodic arrays is applied to the problem of light scattering from beetles. We extend the method to include perturbations in the permittivity tensor to helicoidal arrays seen in many species of scarab beetle and optically anisotropic layered materials more generally. This extension permits analysis of typical dislocations arising from the biological assembly process and the presence of other structures in the elytra.
View Article and Find Full Text PDFAcc Mater Res
June 2023
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!