Although systems that are involved in attentional selection have been studied extensively, much less is known about nonselective systems. To study these preparatory mechanisms, we compared activity in auditory cortex that was elicited by sounds while rats performed an auditory task ('engaged') with activity that was elicited by identical stimuli while subjects were awake but not performing a task ('passive'). We found that engagement suppressed responses, an effect that was opposite in sign to that elicited by selective attention. In the auditory thalamus, however, engagement enhanced spontaneous firing rates but did not affect evoked responses. These results indicate that neural activity in auditory cortex cannot be viewed simply as a limited resource that is allocated in greater measure as the state of the animal passes from somnolent to passively listening to engaged and attentive. Instead, the engaged condition possesses a characteristic and distinct neural signature in which sound-evoked responses are paradoxically suppressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084972PMC
http://dx.doi.org/10.1038/nn.2306DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
auditory task
8
activity auditory
8
auditory
5
engaging auditory
4
task suppresses
4
responses
4
suppresses responses
4
responses auditory
4
cortex systems
4

Similar Publications

Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.

Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.

View Article and Find Full Text PDF

This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility.

View Article and Find Full Text PDF

When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects of both sexes listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

The processing of stationary sounds relies on both local features and compact representations. As local information is compressed into summary statistics, abstract representations emerge. Whether the brain is endowed with distinct neural architectures predisposed to such computations is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!