Neurovascular development in the central nervous system has a rich history and compelling significance. The developing central nervous system (CNS) does not produce vascular progenitor cells, and so ingression of blood vessels is required for continued CNS development and function. Classic studies provide elegant descriptions of formation of the vascular plexus that surrounds the embryonic brain and spinal cord, and the subsequent ingression of blood vessels into the neural tissue. Recent work has focused on the molecular pathways responsible for neurovascular cross-talk and development of the blood-brain barrier. Here we review neurovascular development in the central nervous system, with emphasis on the spinal cord. We discuss the historical work, the current status of our knowledge and unanswered questions. The importance of neurovascular development to diseases of the cerebral vasculature and the neural stem cell niche are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679887PMC
http://dx.doi.org/10.4161/cam.3.2.8397DOI Listing

Publication Analysis

Top Keywords

neurovascular development
16
central nervous
12
nervous system
12
development central
8
ingression blood
8
blood vessels
8
spinal cord
8
neurovascular
5
development
5
development beautiful
4

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded).

View Article and Find Full Text PDF

Kissing aneurysms, a rare and intriguing cerebrovascular anomaly, challenge even the most advanced neurosurgical techniques. These lesions, characterized by two intimately apposed aneurysms with shared arterial walls, often masquerade as single, irregular aneurysms. This report documents a case of ruptured kissing aneurysms in the M1 segment of the right middle cerebral artery (MCA), complicated by ischemic stroke and pulmonary thromboembolism (PTE)-a convergence of severe complications rarely encountered.

View Article and Find Full Text PDF

Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential.

View Article and Find Full Text PDF

Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!