Recent work has highlighted the importance of alternative, error-prone mechanisms for joining DNA double-strand breaks (DSBs) in mammalian cells. These noncanonical, nonhomologous end-joining (NHEJ) pathways threaten genomic stability but remain poorly characterized. The RAG postcleavage complex normally prevents V(D)J recombination-associated DSBs from accessing alternative NHEJ. Because the MRE11/RAD50/NBS1 complex localizes to RAG-mediated DSBs and possesses DNA end tethering, processing, and joining activities, we asked whether it plays a role in the mechanism of alternative NHEJ or participates in regulating access of DSBs to alternative repair pathways. We find that NBS1 is required for alternative NHEJ of hairpin coding ends, suppresses alternative NHEJ of signal ends, and promotes proper resolution of inversional recombination intermediates. These data demonstrate that the MRE11 complex functions at two distinct levels, regulating repair pathway choice (likely through enhancing the stability of DNA end complexes) and participating in alternative NHEJ of coding ends.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704125 | PMC |
http://dx.doi.org/10.1016/j.molcel.2009.03.009 | DOI Listing |
Biochem J
January 2025
School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand.
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFRadiat Res
January 2025
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA.
Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus.
View Article and Find Full Text PDFElife
December 2024
Department of Biochemistry, Indian Institute of Science Bangalore, Bengaluru, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!