Lectin-based screen-printed gold electrodes are reported for the impedimetric label-free detection of bacteria. The selective interaction of lectins with carbohydrate components from microorganisms surface was used as the recognition principle for their detection and identification. Electrochemical impedance spectroscopy (EIS) was employed for the direct label-free transduction of the bacteria-lectin binding. Biotinylated Concanavalin A (Con A) and Escherichia coli were used for the evaluation of the lectin-bacteria complex formation. This complex was formed in solution, and then adsorbed onto the gold SPE surface. No bacteria immobilization was observed on the sensor prepared in the absence of ConA, demonstrating the absence of non-specific bacteria adsorption onto the gold SPE. On the contrary, the changes in electron transfer resistance allowed monitoring of E. coli-biotinylated Con A complex formation without any amplification step. Experimental variables such as the biotinylated-Con A concentration and the bacteria-lectin incubation time were optimized. The electron transfer resistance varied linearly with the logarithmic value of E. coli concentration over four orders of magnitude, 5.0 x 10(3) and 5.0 x 10(7) cfu mL(-1). The selectivity of the approach was evaluated by checking the impedimetric responses of gold SPE modified with the complexes formed between nine lectins and three different bacteria (E. coli, Staphylococcus aureus and Mycobacterium phlei). Different response profiles were found when the different lectins were used as recognition elements. principal component analysis (PCA) allowed classification and distinction among bacteria. Finally, electrochemical monitoring of beta-galactosidase activity for the surface attached bacteria was demonstrated to be useful to distinguish between E. coli and S. aureus, which exhibit a similar affinity towards biotinylated-Con A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2009.01.059 | DOI Listing |
Med Devices (Auckl)
January 2025
Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Jawa Barat, 45363, Indonesia.
Background: Biomarkers are essential tools for diagnosing diseases. Saliva, as a human fluid, effectively reflects the body's condition due to its rich composition. Analyzing saliva components allows for noninvasive, cost-effective, and time-efficient screening and diagnosis.
View Article and Find Full Text PDFTalanta
January 2025
College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania. Electronic address:
Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Monitoring potassium ion (K) concentration is essential in veterinary medicine, particularly for preventing hypokalemia in dairy cows, which can severely impact their health and productivity. While traditional laboratory methods like atomic absorption spectrometry are accurate, they are also time-consuming and require complex sample preparation. Ion-selective electrodes (ISEs) provide an alternative that is faster and more suitable for field measurements, but their performance is often compromised under variable temperature conditions, leading to inaccuracies.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany. Electronic address:
The number of prescriptions for new direct oral anticoagulants (DOACs) apixaban, edoxaban, rivaroxaban and dabigatran has increased exponentially in recent years, increasingly replacing the old gold standard, vitamin-K-antagonists. Due to their wide therapeutic range, therapeutic drug monitoring (TDM) is not required, although it has been proven that this could significantly reduce side effects. In order to develop a cost-efficient and simple method for the simultaneous detection of the DOACs and phenprocoumon, a new technology for sample preparation from capillary blood in the ambulant sector named VAMS® was integrated and an LC-MS detector with on-line solid phase extraction (SPE) applying a Turboflow HTLC Cyclone 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!