Several lines of evidence indicate that peripheral 5-HT2A receptors are involved in the development of inflammatory and neuropathic pain. However, their localization in sensory cell bodies is not accurately known. We therefore studied 5-HT2A receptor distribution in rat lumbar dorsal root ganglia using immunocytochemistry. Forty percent of L3 lumbar dorsal root ganglion cells were immunoreactive for 5-HT2A receptor. Most were small- to medium-sized cell bodies. Double-labeled experiments revealed that they expressed various chemical phenotypes. The smaller 5-HT2AR cell bodies often bind the isolectin B4 although some 5-HT2AR cell bodies also express substance P (SP). Many 5-HT2A-positive small dorsal root ganglion cells expressed the capsaicin receptor transient receptor potential vanilloid type 1 receptor (TRPV1), confirming their nociceptive nature. In addition, a few large cell bodies were labeled for 5-HT2A, and they also expressed NF200 suggesting that they were at the origin of Adelta or Abeta fibers. A total absence of double labeling with parvalbumin showed that they were not proprioceptors. 5-HT2A immunoreactivity in dorsal root ganglia cells was found in the cytoplasm and along the plasma membrane at the interface between sensory cell and the adjacent satellite cells; this distribution was confirmed under the electron microscope, and suggested a functional role for the 5-HT2A receptor at these sites. We therefore investigated the presence of 5-HT and 5-HIAA in lumbar dorsal root ganglia by high performance liquid chromatography. There were 5.75+/-0.80 ng 5-HT and 3.19+/-0.37 ng 5-hydroxyindoleacetic acid (5-HIAA) per mg of protein with a ratio 5-HIAA/5-HT of 0.67+/-0.10, similar to values typically observed in brain tissues. These findings suggest that 5-HT, via the 5-HT2AR, may be involved in the peripheral control of sensory afferents, mainly unmyelinated nociceptors and to a lesser extent neurons with Adelta or Abeta fibers, and in the control of cellular excitability of some dorsal root cell bodies through a paracrine mechanism of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2009.03.087DOI Listing

Publication Analysis

Top Keywords

dorsal root
28
cell bodies
24
5-ht2a receptor
16
lumbar dorsal
16
root ganglia
16
rat lumbar
8
sensory cell
8
root ganglion
8
ganglion cells
8
5-ht2ar cell
8

Similar Publications

Background: The search for effective painkillers has led to intensive research, with a particular focus on the transient receptor potential vanilloid-1 (TRPV1) channel as a possible target.

Methods: One promising candidate is ononin, which is investigated for its binding with TRPV1 through a 200-ns molecular dynamic simulation and analysed via root-meansquare deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen-bond interactions, radius of gyration (RadGyr), and MM-PBSA energy calculations. The results were further validated experimentally via calcium imaging studies.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Fundamentals of intervertebral disc degeneration and related discogenic pain.

World J Orthop

January 2025

Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.

Lumbar intervertebral disc degeneration is thought to be the main cause of low back pain, although the mechanisms by which it occurs and leads to pain remain unclear. In healthy adult discs, vessels and nerves are present only in the outer layer of the annulus fibrosus and in the bony endplate. Animal models, and histological and biomechanical studies have shown that annulus tear or endplate injury is the initiating factor for painful disc degeneration.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.

View Article and Find Full Text PDF

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!