AI Article Synopsis

Article Abstract

Objectives: To investigate if the protective effects of xenon and isoflurane against myocardial ischemia-reperfusion damage would be additive.

Design: A prospective, randomized laboratory investigation.

Setting: An animal laboratory of a university hospital.

Participants: Thirty-six pigs (female German landrace).

Interventions: In an open-chest preparation with thiopental anesthesia, the left anterior descending artery was occluded to produce ischemia for 60 minutes. One hour previously, ischemic preconditioning, isoflurane (0.55 minimum alveolar concentration [MAC]) alone, or isoflurane together with xenon (0.55 MAC each) were started in the respective groups. A fourth (control) group received no protective intervention. Myocardial ischemia was followed by 2 hours of reperfusion.

Measurements And Main Results: Hearts were excised and stained (Evans Blue/TTC) to measure infarct size as related to the area at risk. Myocardial infarct size was reduced (means +/- standard deviation) from 64% +/- 9% of the area at risk in the control group to 19% +/- 12% with ischemic preconditioning to 46% +/- 12% with isoflurane and to 39% +/- 13% with isoflurane and xenon. All intervention groups were significantly different from the control (p < 0.05), and both anesthetic groups were significantly different from ischemic preconditioning (p < 0.05).

Conclusion: Combined isoflurane/xenon anesthesia reduced infarct size but not more than isoflurane alone. Ischemic preconditioning was more effective than the anesthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.jvca.2009.01.028DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
16
infarct size
12
xenon isoflurane
8
isoflurane xenon
8
control group
8
area risk
8
+/- 12%
8
isoflurane
6
+/-
5
xenon
4

Similar Publications

Ischemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.

View Article and Find Full Text PDF

Hyperbaric oxygen therapy for cardiovascular surgery.

Med Gas Res

June 2025

Department of Hyperbaric Oxygen, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Common cardiovascular surgeries include coronary artery bypass grafting, cardiac valve replacement, radiofrequency ablation, and cardiac intervention surgery. Multiple postoperative complications, such as hypoxic encephalopathy, air embolism, retained intracardiac air, cognitive dysfunction and major adverse cardiovascular events, including heart failure, ischemic stroke, and myocardial infarction, may occur after these cardiovascular surgeries. Hyperbaric oxygen can be used in preconditioning to lower the morbidity of adverse complications.

View Article and Find Full Text PDF

MOTS-c mimics remote ischemic preconditioning in protecting against lung ischemia-reperfusion injury by alleviating endothelial barrier dysfunction.

Free Radic Biol Med

January 2025

Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China. Electronic address:

Remote ischemic preconditioning (RIPC) induces the expression of unidentified protective cytokines that mitigate lung ischemia-reperfusion injury (LIRI). This study hypothesizes that MOTS-c, a mitokine with potent protective effects against mitochondrial damage, contributes to RIPC-mediated protection by alleviating endothelial barrier dysfunction. In human lung transplantation patients, serum levels of MOTS-c significantly decreased following IR injury but were markedly increased when RIPC was performed prior to transplantation.

View Article and Find Full Text PDF

Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!