Interleukin-15 expression affects homeostasis and function of B cells through NK cell-derived interferon-gamma.

Cell Immunol

Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Ont., Canada.

Published: June 2009

Interleukin-15 (IL-15) is a cytokine important for the development, maturation, and function of many cells of the immune system including NK, NKT, gammadeltaT, and CD8(+) T cells. The relationship between IL-15 and B lymphocytes however, is not well characterized and is the focus of our study. Previous in vitro reports have shown that IL-15 increases proliferation of B lymphocytes and increases antibody secretion however, this relationship remains inadequately defined in vivo. The focus of this study was to examine the role of IL-15 in B cell homeostasis and function in vivo using mice that either over express IL-15 (IL-15tg mice) or are deficient in IL-15 (IL-15(-/-) mice) production. Here we report significant differences between the B cell populations of IL-15(-/-), C57BL/6, and IL-15tg mice. In fact, increased expression of IL-15 resulted in a significant decrease in the percentage and absolute number of CD19(+) cells. In vitro B cell co-cultures implicate interferon-gamma (IFN-gamma) as the factor responsible for inhibiting B cell proliferation. We also show that IL-15 expression affects B cell function, as B cells from IL-15 transgenic mice produce greater amounts of IgG and IgA than IL-15 knockout mice in vitro. Interestingly, despite significant differences in B cell numbers in these strains, there were no significant differences in total antibody titers in serum and vaginal washes of these mice. Results from our in vivo and in vitro experiments suggest that altered expression of IL-15 affects B cell homeostasis through the induction of NK cell-derived IFN-gamma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellimm.2009.03.010DOI Listing

Publication Analysis

Top Keywords

function cells
12
il-15
11
homeostasis function
8
focus study
8
il-15 cell
8
cell homeostasis
8
il-15tg mice
8
differences cell
8
expression il-15
8
cell
7

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.

View Article and Find Full Text PDF

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!